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FINAL REPORT
ON

AN INVESTIGATION OF NONLINEAR INTERACTION PHENOMENA IN THE IONOSPHERE

i. Introduction (J. E. Rowe)

The research conducted under this grant was directed toward improving
cur understanding of VLF emission phenomena in the ionosphere. Several
different mechanisms have been investigated with particular emphasis being
placed upon investigating various nonlinear interaction phenomena. The
results of these various studles have been published and a reprint of each is
attached.

A second type of theoretical study carried out was on the subject
of ancmalous diffusion in a cylindrical plasma column in the region above the
critical magnetic field. A summary of the results of this investigation is
given in the next section. A complete report on the study will be publishea

as a doctoral thesis under the program.

a

2. Anomalous Diffusion in a Cylindrical Plasma Column Above the Critical Field

s

Superviscr: J. E. Rowe
Staff: R. Hu

The principal purpose of this study was to investigate the anomalous
diffusion due to the helical instability in a cylindrical plasma column
immersed in a strong external axial magnetic field. Three effects which were
hitherto considered to be negligible to the overall phenomenon are examined
in deball herae; namely, electron inertia, finite-amplitude perturbations and
the ion-cyclotron frequency.

The effect of electron inertia on anomalous diffusion is investigated

by inciuding this particular term in the electron fluid equations. However,
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the combination of these fluid equations with the electron inertia term and

the equations of continuity for ionized gases is too complicated to cbtain any
analytical insight. A transformation is made using the method of averaging to
overcome this difficﬁlty. The transformed equations reveal that the electron
inertia does not play an important role in the anomalous radial diffusion so long
as the electron-cyclotron frequency is much larger than the collisional damping
frequency between electrons and neutrals. Nonetheless, the analysis reveals
that a cylindrical plasma column subjected to an axial statlc magnetic field

is constantly vibrating about the axis of the external magnetic fileld.  This
vibration of the plasma column should be observed in the plasma column unless
some other unknown processes disrupt it. In fact, the vibration should be
observed in nearly all types of low-temperature plasmas immersed in a strong
axial magnetic field since they obey the same set of diffusion equations.

A finite-amplitude helical perturbation with one stable nonsteady
mode of oscillation is investigated and thus the assumption that the radial
diffusion is ambipolar is no longer necessary. Galerkins' method is then used
to transform the nonlinear differential equations into nonlinear algebraic
equations. A nonlinear dispersion relation is then derived after an
appropriate change of variables. The marginal stability criterion and the
perturbed wavelength can then be obtained from the imaginary part of the
dispersion relation while the perturbed wave frequency is obtained from the
real part of the dispersion relation.

The dimensionless numerical values for the marginal stability criterion,
perturbed wavelength and frequency are then calculated and plotted using an
IBM-360 computer system. The curves indicate marginal stability in the sense
that it is a necessary but not sufficient condition for the instability to
occur. A comparison between theory and experiments can be accomplished by

discarding the unnecessary condition that the rate of growth is zero. The
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comparison between the theory and the experimental results of Sheffieldfs is
as follows: The calculated axial wavelengths are about one-half of the
measured values while the calculated rotational frequencies are twice that
of the measured ones. The velocities of the perturbed wave, which is the
product of perturbed wavelength and frequency, are approximately the same in
both theory and experiments. Furthermore, the increase of the perturbed wave
frequency with decreasing pressure is also in agreement with experiments.
These agreements are considered satisfactory because there are many uncertainties
in the experimental data.

The effect of the cyclotron frequency has been investigated by taking
N, which is the ratio of ion-to-electron temperature, in the expressions for
the marginal stability criterion, perturbed wavelength and frequency to have
four successive values of 1, 0.1, 0.01 and 0. It is found that even in the
extreme case of 7 equal to unity, the contribution of a finite ion-cyclotron
frequency to anomalous diffusion is small and can be neglected. However, there
are terms which are of the same order as those due to the electron-cyclotron
frequency which are missing because of the omission of the effect of the
ion-cyclotron frequency. The overall effect is that while the order of
magnitude remains the same, the value of the magnetic field which gives rise

to -anomalous diffusion changes.
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Hydrodynamic Analysis of Noise in a Finite-Temperature Electron Beam*

H. C. Hsien
Electron Physics Laboratory, Department of Electrical Engineering, The Universily of Michigan, Ann Arbor, Michigan
(Received 4 March 1965)

On the basis of a small-signal, one-dimensional analysis, a set of basic macroscopic differential equations,
governing the fluctuations in quantities such as the electron-beam temperature, the mean velocity, and the
current density, has been derived by taking moments of the Liouville equation with respect to the velocity
variable. This set of differential equations expresses the conservations of charge, momentum, and energy, and
is valid for an arbitrary amount of velocity spreading and includes the efiect of heat conduction.

A system of differential equations, governing the correlation among the fluctuations in the mean velocity,
current density, and beam temperature, is also derived. The relationship among the various noise parameters
along the electron beam is obtained in the form of a system of differential equations whose solution gives
detailed information on the variation of the noisiness parameter along the beam. The solution of the system

of differential equations thus derived is also discussed.

I. INTRODUCTION

HE analysis of a multivelocity electron beam by
the density-function method has been discussed
by Siegman,! and using this method of analysis the noise
propagation in a one-dimensional space-charge-limited
diode has been investigated numerically by Siegman,
Watkins, and Hsieh.? The result of their numerical
analysis shows that the noise parameters defined by
Haus? do not remain invariant as the beam passes
through a multivelocity region, which suggests that
both the self-power and cross-power density spectra of
shot noise fluctuations can undergo considerable modi-
fication in propagation through the potential minimum
region. In particular, the quantity (S—II), which
determines the theoretical minimum noise figure of a
beam-type amplifier, decreases considerably below its
value at the cathode.

Although the microscopic density-function method of
analysis of Siegman e/ al.? is rigorous, it is also intricate,
and depends upon solving a complicated partial dif-
ferential equation for representative solutions. On the
other hand, there exists a simpler macroscopic ‘“hydro-
dynamical” model of an electron beam introduced by
Hahn,* which may also describe at least the first-order
effects of velocity spread. This model has been used by
Parzen®® and Goldstein® in a discussion of traveling-
wave-tube gain, and later by Berghammer and Bloom?
in their discussion of the nonconservation of the noise
parameters in a multivelocity electron beam with
sufficiently small but nonzero velocity spread. These
latter authors have demonstrated the possibility of
obtaining an equivalent transmission-line equation for a
beam with a small velocity spread and have also dis-
cussed the case of a drifting beam in some detail.

*This work was supported by the Rome Air Development
Center under Contract No. AF30(602)-3569.

1A, E. Siegman, J. Appl. Phys. 28, 1132 (1957).

2 A. E. Siegman, D. A. Watkins, and H. C. Hsieh, J. Appl.
Phys. 28, 1138 (1957).

3 H. A. Haus, J. Appl. Phys. 26, 560 (1955).

4. C. Hahn, Proc. IRE 36, 1115 (1948).

5 P. Parzen and L. Goldstein, J. Appl. Phys. 22, 398 (1951).

6 P, Parzen, J. Appl. Phys. 23, 394 (1952).

7 J. Berghammer and S. Bloom, J. Appl. Phys. 31, 454 (1960).

In this paper an attempt is made to develop a method
of analysis of noise in a multivelocity electron beam
based on a hydrodynamic model, which adequately
takes into account the effect of heat conduction as well
as temperature fluctuations along the beam.

Based on a small-signal, one-dimensional analysis, a
set of basic differential equations governing the fluctua-
tions in the mean electron beam velocity, the current
density, and the electron beam temperature is derived
by taking the moments of Liouville’s equation (collision-
free Boltzmann equation) with respect to the velocity
variable. The relationships among the various noise
parameters along the electron beam are derived in the
form of a system of ordinary differential equations
whose solution yields the desired information on the
variation of noise parameters. The solution of the
system of differential equations, thus derived, is dis-
cussed briefly.

II. DERIVATION OF THE BASIC DIFFERENTIAL
EQUATIONS GOVERNING A MULTI-
VELOCITY ELECTRON BEAM

The Boltzmann equation for a one-dimensional,
nonrelativistic, collision-free electron beam is written as
OF (vau,t)  OF (wyu,l) OF (x,04,1)
— 4t u———+nE(,)—=0, (1)

at Jx Ju

where E(x,f) is the longitudinal electric field intensity
and 7 is the charge-to-mass ratio, with m being the elec-
tronic mass and e the electronic charge which is
taken as a negative value. The distribution function
F (x,u,l)dxdu denotes the charge density in the interval
dx at the instant ¢ due to electrons with velocities be-
tween # and 2--du. Taking the zero-, first-, and second-
order moments of Eq. (1) with respect to the velocity
variable #, then integrating by parts, with the as-
sumption that F(x, 4= %, )=0, and in view of the fact
that # and « are independent variables, yields the
following three macroscopic equations. These express
the idea of conservation of charge, conservation of mo-

2414
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mentum, and the conservation of energy, respectively;

9p/ 43T /0x=0, (2)
d 0
—(pv)+—(p(1?)) —mpE=0, (3)
ot ox
and
d d
—(pw*))+—(p{u?)) — 2npr =0, (4)
ot ox

where the macroscopic charge density, mean velocity,
and convection current density of the electron beam are
defined, respectively, as

p(;\r,t)=/ Fdu,

1
z*(;v,t)=—/ ulFdu,

[
and

J(x,0) =/ uFdu=pv; (5)

and the mean values of #” are defined by

1 7}
(u")z—/ w"Fdu. (6)
PJ—n
It is to be noted that
(u)="v, (7a)
(1) = ((u—0?), (7h)
and
(u3)y=v3~43v((u—0)2)+ ((—10)?). (7c)

In view of the fact that the electron beam temperature
T'(x,t) 1s related to the mean-square deviation of the

velocity by
kT (x)t)/m= ((u—0)?), (8)

where % is the Boltzmann constant, Eqs. (2)-(4) can be
written as follows:

dp/ot+9aJ/dx=0, (9)
d ¢ d kT
—(pv)+—(Jv)—npE= ~—<p—>, (10)
at dx dx\ m

and

d d d/ kT
() —(T)— 2T Em ——<p~>
at dx at\ m

_i[sj<ﬁ>+p<('2t—v)3>:l- (11)

ax m

A EITNTTE-TEMPERATURE" " ELECITRON

BEAM

Tt is noticed that the right-hand sides of Egs. (10) and
(11) indicate the effect of the presence of beam velocity
spreading and they vanish as the velocity spread ap-
proaches zero, leading to the familiar form of the equa-
tion of motion and the kinetic power theorem of the
single-velocity theory. Furthermore, the last term on
the right-hand side of Eq. (11), when it is divided by a
factor (—27), represents the divergence of the energy
flow density. The first member of this term represents
the internal energy carried by the average velocity which
is often referred to as convection and the second
member corresponds to the energy carried by (heat)
conduction.

For convenience, let us define the thermal current
density Q (i.e., the rate of transfer of kinetic energy
associated with the random motion per unit area per
second) as follows:

1 1 =
Q(:\T,I)Z——p<(1lr—l')3>=4/ (u—v)3Fdu. (12)
_277 _277 —»

Then, by multiplying Eq. (10) by (2¢) and subtracting
from Eq. (11), with the aid of Eq. (9), Eq. (11) can be
written in the following manner:

d/ kT ./ kT ol kL aQ
DD
dx\ m AN m dx\ m ox

Assume that all quantities of interest have the following
form:

(13)

G(x,t)=Go(x)+Gi(x)et, (14)

with w being the angular radian frequency. Equations
(5), (9), (10), and (13) yield the following set of dc
equations:

Jo= Polo, (15)
(l’](,]/d.\‘r:(), (16)
d d kT
*(Jo"t'o)—ﬂpoEfF —_<Pu‘>, (17)
dx dx m

and

d s kT, d kT, dQq
21',,—(/;04):3*(]0*)—277—, (18)
dx m dx m dx

and the following set of ac equations (under the small-
signal assumption) :

J1= pov1t2op1, (19)
_‘].wpr}‘djl/dx:(), (20)
d
jwf1+—i— (~707'1~‘1‘]17'0> -1 (P0E1+ P1En)
ax
d kT kT
SR Lo
dx m m
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and
1[ /€T|; d ]?T[ kTu
201 <Po—> + 27'07<PU——+ P 1;>
dx m dx m m
> kT kT d kT kT,
- ]w<Pu +P14>+34<]ol+»71——>
m n dx m m
dQq
—2—. (22)
dx

The set of dc equations can be solved with the aid of the
electrostatic scalar potential function, which satisfies
Poisson’s equation, and the dc density function. The
ac quantities, v1, p1, J1, T'1, Q1, and E; are of interest to
us in the study of noise in the electron beam.

For a one-dimensional beam (or in an open-circuited
diode) the total alternating current density may be
considered to be zero, so that the alternating convection
current density /5 and the ac electric field £; are related
by

E1= —]1/jw60, (23)
where ¢ is the dielectric constant 2 vacuo.

Let us now assume that the alternating thermal cur-
rent density Q; is invariant along the beam, i.e.,

dQ1/dx=0 (24)
so that it is only necessary to use three ac quantities to
characterize the ac behavior of the beam, in view of
relations (19), (23), and (24). In the present paper it
has been decided to work with the quantities v1, J1,
and 7' and for convenience consider the ratio of the ac
to dc quantities, namely, (J1/J0o), (v1/20), and (T1/T).

After some algebraic manipulation, the following set
of differential equations is obtained (see Appendix A
for the details) :

dX.(x) 3 b,
= Z 61,,,(:\7>X1(5\7) [=1, 2, 3,
d.\? m=1

(25)

in which the symbol ~ denotes a complex quantity and
thus X (%) and @ (x) are complex quantities although
the independent variable «x is real. In the system of Eq.
(25) the dependent variables X;(v) are defined as

¥ 71 () f T1(x)
Xo(x)= , and Xj(x)=

25(%) To(x)

71 (;\')

‘YJ (: :) = )
: Jo (_~\’)

(26a)

and the coefficients @, (x) are given by

Gin(®) =bim(x)+ jCin(x), 1=1,2,3 m=1,2,3, (26b)

HSIEH 2416
with
a1n=—jBey G12=jBe; @13=0),
oh  Be w,*
Ay = —_+j—<]l+*>,
A A w?
2-d Be
Ass—~— = hl'['[]'—'j*(l—*—]l),
A dx A
3 d Be
fo3=—— Invo+ 57—,
A dx A
] 2B C"132
ﬁglz_(l—ll)—j‘“(ll—*——),
A A w?
4 d 20,
632: = 1311‘0+j—(1+11>
A dx A
and

i d 6.
G33= —[5 (1—3h)—6h— I’m'oj|— ——h),
A dx A

with

A(x)=1=3%(x). (26¢)

The wavenumbers S.(x), plasma angular frequency
wp(x), velocity spreading parameter /%(x), and heat
conduction parameter §(x) are defined as follows:
Be(@)=w/v0(x), wy*(®)=nps(x)/ e,
h(x)=kTo(x)/mve(x),

— 24/ m \dQ
)= #<f>4’
\]u an d.\‘

and

(26d)

Now let the function ®;,(x) be defined as follows:

B () =X ()X 2 )  1=152,3. n=1,2,3," (1)
where the symbol * denotes the complex conjugate. It
is to be noted that, in a language of the generalized
harmonic analysis,® ®;,(x) represents the spectra of the
correlation; for example, if /= it represents the spec-
trum of the autocorrelation of a random function,
e.g., the current-, velocity-, or beam-temperature
fluctuation in our case, and if /£ it represents the spec-
trum of the cross-correlation of the random functions.
These spectra and their respective correlation functions
are related by a Fourier transform pair.
Since ®;,(x) is a complex quantity it can always be
expressed in the following form:
Dy () =T () F jA (), (28)
where II;, and A;, are real quantities. Then the func-
tions @, (x), I, (x), and Ay, (x) can be shown to have

8Y. W. Lee, Statistical Theory of Communication (John Wiley
& Sons, Inc., New York, 1960), Chap. 2.
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the following properties:

&)Ln: ((%ul)*, Hluzllul; A[n: _‘A\nl
Torml="152 53 Sy —i1"5 3"
<I>”=H” and 1\”:0 for lzl, 2, 3% (29)

Upon differentiating Eq. (27) with respect to the real
variable & and using Eqs. (25) and (29) one obtains

ddy, (x) 3 ) o
=3 [@in(%)Ppn (@) FTom™ () Po* (x) ]

d;\) m=1
=1, 2,38 cand" n=152.830 (30)

The following system of first-order ordinary real differ-
ential equations is then obtained with the aid of Eq. (28):

dHln 3

d = Z I:(b1111H11111+bllmHml)— (ClmAmn+CnmAml):|

K% m=1

I=t1# 28 S — I3 (30 )

and
dAln 3

d = Z [(Clmnmn'—cnmnml)+(blmAmn—bnmAml):l

X m=1

I%n.  (30b)

It is observed that there are nine correlation functions
which need to be considered, namely auto- and cross-
correlation of the current fluctuations, velocity fluctua-
tions and temperature fluctuations. Although there are
18 parameters II;, and Ay, for /=1, 2, 3 and n=1, 2, 3
involved, since Eq. (29) represents nine conditions of
constraint, it is necessary only to use nine parameters
to specify the correlations. Consequently, the conditions
are to be imposed on Eq. (30) in such a way that Eq.
(30a) gives six equations and Eq. (30b) gives three
equations.

It is interesting to note that in the case of a single-
velocity beam there are only four parameters needed to
specify the correlation; however, nine are needed here.

The conventionally defined noise parameters, ¥, ®,
II, A, and S, introduced by Haus?® are related to the II;,
and Az, as follows (on the basis of per unit bandwidth
and per unit beam cross-sectional area) :

V= (4x)~1 @Iy,

&= (4r) 7" (v"/n") Iaz,

M= (4)~* (v0* o/n) a1, (31a)
A= (4m) L (ve® T o/n)As1,

S= (477)_1 (7)02]0/77)521,

where
S21: [HQQHll"‘l\Ql?:I% (31}))

and the noisiness parameter N (x) can be expressed as

2 Vol Jo\ 1
N(x)=—/(S—1I)= n(x)= <—>An (v). (32a)
kT kT 2e/ h(x)

The dc kinetic voltage Vg, the direct beam current 7y,
and the dimensionless parameter 7 (x) are defined by

Vo= *7'1)2/2‘0,
[0: == Jﬂ
and
n(x)=Sa1(x) — 11 (x). (32b)

The theoretical minimum noise figure for a beam-type
amplifier may be written as

ijnz 1—|— (Vo[o/kTo)N(;\T), (33)

where To(x) is the dc electron beam temperature.

In order to know how N (x) varies along the beam, it
is necessary to find out the variations of ITyy, ITs9, o1,
and A,y with distance by solving the system of differ-
ential equations given by Egs. (30a) and (30b), with
the coefficients @, being given by Eq. (26c).

It is also of interest to note that, upon differentiating
Eq. (31a), and with the aid of Eq. (30a) and (30b), and
using the fact that Ay=0 for /=1, 2, 3, b1,=0 for
m=1, 2, 3, and C13=0, the following relationship is
obtained governing the spatial rate of change of the
conventionally defined noise parameters:

d‘I’/sz == (]02/27T)C12A21,

dd 4 dyy 20t
—= <— —>‘I>+—2|:b21H21+ baoIlgo+CorA o

dx 0 dx 27”’
+bo3TT30— Ca3A 30 |,

dIl /2 dv, 2%/
Bciih- <_ _>H—{— [ba11l11+booIlsy
(l;\‘, Vo d;\7 47”7

‘|‘ (Cu— C22)A21+ b23H31— C23A31],

dA /2 dv v
o <_ *>A—{— [C21H11_ Cralla
dx \7g dx 4

A (sz— Cn) L1+ baaA 91+ CosIl5+ bw\sl]- (34)

Tt is observed that the rate of change of ¥, &, IT, and A
does depend upon the functions ®;; and ®s, which repre-
sent the spectrum of the cross-correlation of the beam
temperature fluctuations and the current fluctuations,
and that of the temperature fluctuations and velocity
fluctuations, respectively.

III. DISCUSSION OF THE SOLUTION OF THE
SYSTEMS OF DIFFERENTIAL
EQUATIONS DERIVED

The systems of ordinary linear differential equations
(25) and (30) can be solved if the coefficients @;,,(x) are
known, and the fluctuation in the quantities such as the
current, the velocity, and the beam temperature, and
their correlation along the electron beam can be deter-
mined when the input-plane boundary conditions are
specified. Since vy(x), po(x), and 7'g(x) are obtainable
from Fy(x,u), the coefficients @, (x) can be determined
once the dc density function Fy(xv,u) is known.

e e,
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For an electron beam in a drift region, where
dvy/dv=0, the coefficients @, become independent of
the position variable x, and 6 also becomes zero. Conse-
quently, the solution to the systems [Eqs. (25) and
(30)] is obtained by a standard Laplace-transform
technique, which is rather straightforward and simple.
On the other hand, for a beam in an accelerating region,
once the coefficients @, (x) as functions of the position
x are known, a numerical method, such as the Runge-
Kuttamethod,?® can be employed for solving the systems
Egs. (25) and (30).

Case 1. Drifting Beam

For a drifting beam, the system of Eq. (25) has a
traveling-wave solution, which can be easily shown as
follows: After taking the Laplace transformation of the
system (25) with respect to the spatial variable «, the
following set of algebraic equations is obtained:

i Din(®)yn(p)=X:(0) 1=1,2,3, (35)

where g x
yi(p)= / Xy(x)eradx (36a)

and :
D (p)= Grmp—ain) (36b)

in which 8, is the Kroneker delta, equal to one for
I=1m, and to zero for [%m. The term X;(0) appearing in
Eq. (35) denotes the values of X;(x) at x=0, the input
plane to the drift region.

From Cramer’s rule the solution of the set of Eq. (35)
can be expressed as follows:

3 N Im (P)
yn(p)=2_
=T

where D(p) is the determinant of the set of the trans-
formed Eq. (35) with an order of 3, and N (p) is the
cofactor of the element D, in the determinant D(p),
which is formed from D(p) by striking out the row and
column containing the element Dy, and prefixing the
sign factor (—1)H™.

After taking the inverse transformation of the system
(37), it is found that

X3(0) m=1, 2,3, (37)

3 4‘\711". (P/\)
Xon(x)=>" X:1(0)>2 erke 0<x
1=1 k=1 D’(pk)
m=1,2,3 (38a)
where
D’ (Pk) = d'D/d'P l P=p} (38b)

provided that the rational fraction [N.(p)/D(p) ] has
only a first-order pole, where p; is the root of the charac-
teristic equation D(p)=0.

9 J. B. Scarborough, Numerical Mathematical Analysis (The
John Hopkins Press, Baltimore, Maryland, 1962), 5th ed., p. 301.
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In view of the fact that in a drift region, dvy/dx=0,
and from Eqs. (17), (18), and (26d), § must be zero, so
that the coefficients @;, become purely imaginary
quantities, and it can be easily shown that the charac-
teristic equation has the following form :

D(p)=p+ap*+bp+c=0, (39)
in which
a=jB.A, b=(jB.)*B, and c¢=(jB.)’C, (40a)
with
A1 1A
B=A"1(3—w,*/w?), (40b)
C=A11—w2/w?):
Now by letting
p=JBer, (41)
Eq. (39) becomes
Ay By C=0, (42)

which can be arranged in the following form, when 4,
B, and C are given by Eq. (40b),

(r+D[AY*+2v+ (1—w,’/w?) ]=0. (43)

Note that Eq. (43) has three distinct roots and conse-
quently Eq. (39) has the following roots:

p1=—jB.
pr=—JB/A)[1—{1-A(l—w,/e?)}}] (44a)
ps=— B/ A)[1+H{1—A(1—w,?/w?)} ].

Furthermore note that as #— 0, A— 1 and

p2— _jﬁe(l_wp/“’): _j(Bo—Bp))
ps— — jB(1+wy/w)=—j(B+B5),

which are the familiar expressions for the single-velocity
theory, where 8,=w,/v is the plasma wavenumber. In
view of the fact that the time harmonic variation has
been assumed in the present discussion with the aid of
Eq. (44a), Eq. (38a) represents the superposition of
three propagating waves, all in the positive x direction,
but with different phase velocities. There is one kine-
matic wave with phase velocity equal to the dc beam
velocity, and the other two corresponding to the fast-
and the slow-space-charge waves. Thus it can be con-
cluded that a drifting beam, with an arbitrary amount
of velocity spread, can support one kinematic and two
space-charge waves.

(44b)

Case II. Space-Charge-Limited Diode

It is obvious, from Egs. 5 and 14, that the density
function F(x,,l) is of the form

F(xyu,t) = Fo(x00)+ F1(x,) - €7

It is well known that the de density function Fg(x,u)
which satisfies the dc part of Eq. (1) and at the same
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time meets the proper boundary condition at the cathode

has the following form:

Fo(w,)= 20T oS (u—w)e—u*=w?), (45a)
where
a=m/2kT,
and
Jo=Jo(xm)=J, exp[ —epo(an)/kT.], (45b)

in which J; is the saturation or total value of emission
current density, and 7', is the cathode temperature (in
degrees Kelvin) and ¢o(x,) is the dc potential at the
potential minimum, x=w,,.

The function S (#—w) is the usual unit step function:

S(u—w)=0 for
=4 for

(u—w) <0

(—w)>0. (45¢)
The function w(x) is defined and related to the dc
electric potential function ¢o(x) as follows:

w(x) = Fwo(x)

wo () = [ —2n{ wo(¥) — @o(xm) } I

In Eq. (45d) the upper sign is to be used for the «
region, which is between the cathode and potential
minimum, and the lower sign is for the 8 region, which
is between the potential minimum and the anode.

Having assumed the form of the dc density function,
the quantities po, v0, (£79/m), and Qo can be obtained
and expressed as follows:

(45d)
with
(45€)

po(x)= / Fodu= (ma)iT e[ 1—erf (atw) |, (46a)
1= R et
vp(a)=— / uFydu= :|, (46b)
PoJ e (ra)%l_ 1—erf(aiw)
BT () =i e
=— / (26— 10)2F odut
m  poJ_w
= (kT ./m)—vi®+vaw, (46c)
and
1 0
Qo(d)=—— / (u—1v0)*Fodu
=k
= (Jo/—2)[ (1 /) +w*—v—3kTo/m], (46d)

where w(x) is given by Eq. (45d) and the error function
erf (V) is defined as

2 &
erf(V)=—- / e Vdy.
7 Jo

It is to be noted that in the above equations, po, vo,
(RTo/m), and Q are expressed essentially in terms of the
dc potential function ¢g(x) through Eqs. (45d) and
(45e) and these quantities are continuous at the poten-
tial minimum x=w,,, where w=0. On the other hand,

(46¢)

A FINITE-TEMPERATURE ELECTRON

BEAM

@o(x) must satisfy Poisson’s equation:

P po/dx*= — (1)} (Jo/eo)e [1—erf(aiw)]  (47)
which has been solved numerically by Langmuir.!?

In view of the fact that the electrostatic field intensity
Ey(x) is derivable from the dc potential function ()
by

Ey(x)=—dpy/dx (48)

which is consistent with the requirement that ¢o(x)
must satisfy Poisson’s equation, and upon substitution
of Eq. (48) into Eq. (17), it is found that

(lgao d‘l’g "'1 d kT()
o =— —<po—), (49)
dx dwie "pg=dy m
which is equivalent to the following equation:
dvo/dw=2a(vo—w)2o, (50)

in which v, is considered to be a function of w, since
po, (kTo/m), and ¢, are expressible in terms of w.
Similarly upon substitution of Eq. (46d) into Eq. (18),
Eq. (50) is again obtained.

It is important to observe that the function vy(w)
given by Eq. (46b) does satisfy the differential equation
(50). Thus it indicates two interesting facts:

1. The form assumed for the dc density function
Fo(xvu) given by Eq. (45a) is consistent with the
assumption that the dc potential function must satisfy
Poisson’s equation.

2. The quantities po, vo, (£To/m), and Qo do satisfy
the differential equations (16), (17), and (18).

These facts, in turn, ensure that once the potential
function ¢y, which satisfies Poisson’s equation, is
specified, the quantities po, vo, (kTo/m), and Qo are
properly determined and are given by Egs. (46a-d),
respectively, in such a way that the laws of conservation
of charge, momentum, and energy are satisfied.

Therefore, once the dc potential distribution in the
region under consideration is specified, the functions
h(x) and §(x) are determined from Eq. (26d), and so
are the coefficients @, (x) in the systems (25) and (30).
Having determined the coefficients @, (x), the systems
(25) and (30) can be solved by the Runge-Kutta
method with the properly imposed input-boundary
conditions.

IV. CONCLUDING REMARKS

The heat conduction along the electron beam has
been properly taken into account in the present paper
by introducing the heat conduction parameter 8(x),
which is defined in Eq. (26d). The parameter §(x) is
related to the velocity spreading parameter /7 (x) and
the dc mean velocity vo(x) by the following relation,

0T, Langmuir, Phys. Rev. 21, 419 (1923).
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from Eq. (A7):
6(x)= —[d/dx Inh(x)+4d/dx Invy(x)],  (51)

which is due to the law of conservation of energy, and
6(x) does depend upon the spatial rate of variation of
h(x) and v9(x). On the other hand, the thermal current
density Qy(x), which has a dimension of joules per sec
per unit area, may be put in the following form:

Qo(x) = —No(¥)[dTo(v)/dx], (52)

where Ao is the thermal conductivity of the electron
beam, which in general depends upon the cellision force,
poand Ty, and is governed by Eqs. (18), (26d), and (52).
It is to be observed that for an adiabatic flow A\ can be
set equal to zero so that 6 will be zero also. However,
for an isothermal flow, N\g becomes very large and §
need not be zero. It is interesting to note that for an
adiabatic flow, since §(x) can be set equal to zero,
Eq. (51) implies that the quantity (hv) or (kT o/m)ve?
is invariant along the beam, which suggests that the
quantity (7'/p¢?) is also invariant.” On the other hand,
in a drift region, since Qo(x) is independent of x, §(x)
will be zero from Eq. (26d). Thus it suggests that the
thermal effect (heat conduction effect) in a drifting
beam can be neglected.

It should be pointed. out that no specific assumption
has been made with regard to the input-plane boundary
conditions in deriving the systems of equations (25)
and (30). However, for a special case in which §=0, for
instance, in an adiabatic flow, and when it is further
assumed that the following relation holds at the input
plane, for example, at the cathode surface,

Tl/T(): 2p1/pu :\?»——0,

the system of equations is reduced to that obtained by
Berghammer and Bloom,” which is demonstrated in
Appendix B.

While the density-function method involves solving a
rather complicated partial differential equation, which
must also deal with the Dirac delta function, the present
method of analysis of signal and noise propagation along
the electron beam involves solving a system of linear
ordinary first-order differential equations, whose solu-
tion is obtainable by relatively simple and straight-
forward methods.

(53)

at
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APPENDIX A. DERIVATION OF THE SYSTEM
OF EQUATION (25)

First note the following identity :

dC dD d/C (5 dD
————=D~<—>+<——1>—. (A1)
dx dx dx\D D dx
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From Egs. (15) and (19)
]1/’/]0:‘ '[’1//'/7'[)—{_ Pl/p()- (AZ)

Subtraction of Eq. (16) from Eq. (20) with the aid of
Eqs. (A1) and (A2) gives
d

- J1 \ U J1
16e<*>—165<—>+—<—)= 0,
Jo 2o/ da\J,

Bg:w/'l)().

(A3)

where

Subtraction of Eq. (17) from Eq. (21), with the aid of
Egs. (A1) and (23) gives, after using Eqs. (16), (17),
and (A2):

d

. wp2 ]1 1 Jl
(D))
«? /\Jo/ dx\vy Jo

2 dvo/ 1 1 dy¢ kT\N\T/Ty
AL o
v dx \ 79 Jovo dx m To

where

d T] ]1 "
Ay
dx T() ]0 20

wt=npo/€0, h=kTo/mve.

Similarly, first subtracting Eq. (18) from Eq. (22), and
with the aid of Eq. (A1), then dividing it through by
the factor Jo(kTo/m) yields, after using Egs. (18) and
(A2),

d Jl 27’1 T1 s T1 ]1 U1
S e
dx\J, Ty Jo

9 Ty

m \dQo/T1 J1 m \dQ1
) g
J(,kTo dx Tg Jn ]okT(} dx
Defining the heat conduction parameter §(x) as
—2n/ m \dQ
6<x>=—<—>—°, (A6)
Jo \kT/ dx

Eq. (18) can be written as follows, after it is divided
through by a factor Jo(kTo/m):

d kT, d
— ln<p0———> = —5§(x)—3— In,. (A7)
dx m dx
After making the following definitions
Xa(w)=J1(x)/To(x), Xa(x)=0vi(x)/ve(x),
and X;(w)=T1(x)/To(x), (A8)

Egs. (A3), (A4), and (AS) can be arranged into the
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following system of equations with the assumption (24) :

(14\71 3
e Z :1 lnh\rm,
dy  m=1
dX dX, dX; 3
(1""11) +(1_ +/I‘-— Z 1’1111\711,
d‘\', m=1
dXaL T dXs T dXa 8
+2 — Z 44 Bme; (AQ)
dx dx dx m=1
where
Avu=—j8B,, Ao1=—jBe (1_—> Az1=0— 38,
(.L)
. d .
A=jBe,  Asp=—2—Inu, Aze=jBe,
dx
d
A13=0, Aoy=0h+3h—Invy, Aszz=0—jB.. (A10)

dx

Upon solving algebraically for (dXi/dx), (dX»/dx),
and (dX;/dx), in terms of Xy, X,, and X3, from the
system (A9), with the aid of Cramer’s rule, one obtains

dXI 3
= Z a’lme,
d;\: m=1
(ZLYQ 3
b Z a‘?anmy (A].l)
d;\? m=1
lLYg 3
ST Z a’3me;
(i.\: m=1
where
am=A4 1my
Aoam=— A_l[fl 2m— hA 3,,,"‘:1 1,,1],
A3m=— A‘l[(l —]1)4‘1 3m—— 24 2m+ (1+ 3/1);1 1"1]’
A=1=3 for m=1,2, 3, (A12)

and upon substituting Eq. (A10) into Eq. (A12), E
(26¢) is obtained.

APPENDIX B. DISCUSSION OF THE SYSTEM
OF EQ. (34) FOR A SPECIAL CASE

For the case =0, Eq. (A9) becomes

2dX /dx+dXs/dv=— jB.X3 (B1)

A FINITE-TEMPERATURE ELECTRON BEAM

and from Eqs. (A2) and (A3), one has
dX,

2 P1 d P1
LA e R
dx Po dx Po

After combining Eqs. (B1) and (B2), the following is

obtained :
d /T 1 P1 . T1 P1
ke ——2—)+me ——2—>=o, (B3)
dx\Ty po To po
which has a solution of the form
T1 2p1
———=K exp / Be (y)dy) (B4)
T(_) Po

where K is a constant of integration, which is to be
determined by the input-plane boundary conditions.

Suppose that K=0, as has been used by Berghammer
and Bloom?’; then

TI/T(): 2P1/Po (BS)
or equivalently

Now from Egs. (27) and (28), the following relations
are evolved :
II3= 2[H11— H21:],

B7
1\31: —21\21 ( )
and
H32: 2[H21_ H2‘2:‘, (B8)
1\32: — 21\21.

Upon substituting the relations (B7) and (B8) into the
system of equations (34), with the aid of Eq. (31a)
and using the fact that bs;=0 for 6=0,

(i\I’/d\,z = 2301\,
d®/dx= —2M P+ 2R 142X oA,

(B9)
dIl/dx= Ro¥— M 11+ N oA,
di\/d\ XW—B@d— IV()H—M()A,
where
Bo= (Jon/v?)C1z,
A[o’—— — (2/2)0) (dvo/d:\f) = b22+ 2b23,
Ro= (20*/nJ 0)b23, (B10)

Xo= (’002/77]0) (C21+ 2023) ’

No= (C11—C2+2Cy;3).
When the coefficients b, and Cy, given by Eq. (26c)
are substituted into Eq. (B10), our Egs. (B9) and (B10)

become Eqs. (22) and (19) of Berghammer and Bloom,’
respectively.
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Abstract—The ionosphere is considered as a dissipative medium in which the random thermal
motions of the charged particles act as a source of thermal radiation, Attention has been
focused on the electrons colliding with ions and neutral particles in the ionosphere. A method
of analysis has been developed with the aid of the Maxwell and Langevin equations based on a
linear, macroscopic, fluctuating electromagnetic field theory. The spectral density of the random-
current source function is derived in terms of the conductivity tensor of the ionosphere.

The ionosphere is divided into a large number of inecremental volume elements, each con-
taining an ionized medium which represents an anisotropic elementary radiating system,
characterized by the spectral density of the source function. The radiation characteristic of the
radiating system observed at.a point located outside of the source region is obtained with the
aid of the potential functions which relate the thermal electromagnetic fields at the observation
point to their source function. Based on the superposition principle, general expressions have
been derived for w,, the thermal noise power generated per unit volume, per unit bandwidth,
from any given source region ¥ of the ionosphere, and for Po( f» V), the available thermal
noise per unit bandwidth at a receiving antenna. These expressions are valid for most regions of
interest in the ionosphere where the electron collision process plays a major role in the thermal
radiation and they are not limited in frequency range.

1. INTRODUCTION

It 1s well known that because the ionosphere acts as an absorber of radio waves,
it .can also act as an emitter of thermal radio noise. It has been conclusively
demonstrated by various workers (PAwsEY ef al., 1951; GARDNER, 1954; DowDEN,
1960; LiTTLE et al., 1961) that the thermal emission from the D-region can, under
favorable conditions, be observed with a dipole antenna. .For example, PAWsSEY
et al. (1951) have identified and measured the thermal radiation from the 1onosphere
in the vicinity of 2 Mc/s in the temperate latitude.

It appears that usually the thermal radiation has been neglected because its
level is exceedingly low as illustrated by PAawsrY ef al. (1951) and it does not
constitute an appreciable source of interference in radio communication.” However,
the noise radiated from a plasma (e.g. the ionosphere) is not necessarily a detrimental
effect in all cases, as it is in communication, since if the spectral distribution of the
emitted energy is characteristic of the plasma properties, a measurement of radiation
provides specific information on the plasma. For example, knowledge of the radiated
power gives a measure of the electron temperature in the plasma and this has been
used as a powerful diagnostic technique.

It is well known that the thermal radiation from dissipative bodies is due to
the random thermal motion of the charges in the body. If the body is at a uniform
temperature, one approach that may be used for studying radiation may be called
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the integral approach. The body as a whole is considered to be nonradiating and
the power that is absorbed from its surroundings, which is assumed to be at the
temperature of the body, can be computed. This power is set equal to the power
radiated by the body. In this approach no attempt is made to determine the noise
current fluctuations that are the cause of the thermal radiation. In those cases in
which the temperature of the body is nonuniform this approach fails.

Another approach, which may be called the ‘Nyquist source treatment’ (Ryrov,
1959; Haus, 1961; VanworMHOUDT and Haus, 1962), focuses attention upon the
sources of the radiation and determines their relevant statistical properties. Once
these are known, the determination of the radiation is conceptually a simple problem,
although mathematical difficulties usually arise.

In the present study, the ‘Nyquist source treatment’ is adopted and the iono-
sphere is considered as an anisotropic dissipative medium in which the random
thermal motions of the charged particles act as a source of the thermal radiation.
It is further postulated that in the ionosphere a linear constitutive local relation
exists between the driven a.c. conduction current density J, and an applied a.c.
electric field intensity E of the form

J (o, 1) = o(w, 1) +E(w, 1), (1)
where o is the conductivity tensor of the ionosphere, and a function of the angular

frequency  and position variable r which characterize the medium under consider-
ation. A small-signal analysis is made throughout the present paper.

2. DerivaTioN. oF THE ConDucTivity TENSOR

For a macroscopic analysis the Langevin equation can be used effectively to
describe the motion of an electron, and it can be expressed as follows:

ov
ot
where B(r) is the static geomagnetic field, »(r) is the average electronic collision
frequency with ions and neutral particles, e, m and v are the electronic charge

taken as a negative value, mass and velocity respectively.
On the other hand the convection density J is related to the velocity v by

J = Ngev, (3)
where N,(r) is the electron number density.

Assuming the time harmonic variation ¢/** for the quantities of interest, upon
elimination of v from equations (2) and (3) the following relationship is established :

m

+ mwy = e[E + v X B, (2)

UJT +j( x Y) = —jwe,XE, (4)
where
x w,2 2 N e?
»?’ P me
Y:_eE, y % _ —¢IBl
mew o mo
z=", U=1-jz, (5)
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in which o, and w, are the plasma and gyrofrequencies of the electrons, respectively,
and g, is the dielectric constant of vacuum.

On the other hand, the geomagnetic field B can be approximated by a dlpole
field which is induced by a uniformly magnetized spherical Earth, and may be
expressed (MorGAN, 1959) as

B—"—

3 (6)

Mad cos 6
V( r? )’

where the space variables » and 6 denote, respectively, the radial and polar angular
coordinates of the geomagnetic spherical coordinate system with its origin located
at the center of the Barth, and the constants M and @ are the magnetization and
the radius of the Earth respectively. By adopting this model of the geomagnetic
field, the r-component Y,, the 0-component Y, and the @-component Y of the
vector Y are given by

Y, = 2G cos 6, Y,=Gsinb and Y, =0, (7

@ ()5 G ®

Furthermore, by writing a vector as a column matrix the vector equation (4) may be
conveniently expressed in the following matrix form:

where

yd =E (92)
or equivalently in tensor notation as ~
y-J=E, (9b)
where the resistivity matrix y is defined as
Y= {ya/}}’ Ot,ﬂ = 1,2,3, (10)
with its elements being given by
30
Y11 = Yoz 7T Va3 :w_go—f’
Y2 = —7n =0,
G sin 6
Vi3 = Va1 = EO—XM )
—2G cos 0
V23 Va2 wegX (11)
and with its determinant |y| given by
= r2— Uz 12
il = L (Y~ U (12)
in which
Y2 = G*1 + 38 cos? 0). (13)

ly] can be zero only for a special situation where » = 0 and © = w, occur simulta-

neously. Since » = 0 is not of interest to the present study, |y| can be considered
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to possess an inverse, which is denoted by o and is referred to as the ‘conductivity
matrix’, i.e., -

g ; (14)

11~
[ !

where I is the unit matrix. Consequently, from equations 9a and 14, J can be
expressed in terms of I explicitly as

J =gk (15a)
or in a tensor notation as
J =0-E, (15b)
where
0y = DC,p,  a,f =123, (16)
where
D = jwe, U(WA’:“}'?)
with

Cy = (Z% — 1 + 4G%cos? 0) -+ j2Z

Cyp = (Z%— 1 + G?sin® 0) + 427

Oy = (2% — 1) + j2Z

Cip =0y = 2G%5sin 0 cos §

Cig = —Cg = —(Z + j)G sin 0

Coq = —Cyy = 2(Z + j)G cos 0. (17)

3. Noise Powsr RADIATED FROM THE IONOSPHERE

A body with a non-uniform temperature distribution is not in the thermodynamic
equilibrium. However, in those cases in which the distribution function of charge
carriers deviates only slightly from the equilibrium distribution (so as to produce
heat and current flow), and this includes all cases for which a temperature can be
reasonably defined, it would be expected that the radiated noise power could still
be computed as the superposition of the noise power radiated from the various
volume elements of the body. In this case each element at a particular temperature
radiates the same noise power it would radiate at equilibrium at the same temper-
ature, Such an analysis calls for an approach to the fluctuation problem that
considers each differential volume element separately as an absorber and emitter
of noise power. It calls for the introduction of a source term into Maxwell’s equations
analogous to the source term of the Langevin equation in the theory of Brownian
motion.

Although Maxwell’s equations and the constitutive relation are sufficient to
solve most electromagnetic problems, they are insufficient for noise studies. The
current density derived from the constitutive relation represents only the current
driven by the electromagnetic fields. Besides this driven current, the current density
fluctuation caused by the random motion of the charge must be considered. This
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can be taken into account-by introducing into Maxwell’s equations-a random driving
current density distribution which is independent of the electromagnetic fields, i.e.

oh
and
de .
VXhzb‘O*a“t*”i"l, (19)

where e and h are the time-dependent electric and magnetic fields, respectively,
and i is the current density, y, is the permeability of vacuo. The current density
i in equation 19 consists of two parts. First of all there is the ‘driven’ component
i, that is produced by the electric field e and is related to e by equation 15. The
spontaneous noise fluctuations of the field at thermal equilibrium can be taken into
account by another current component of i in equation 19, the source current
density K(¢, ), a statistical quantity which is a stationary function of time.

3.1 The dyadic spectral density of current source functions

In the study of problems involving radiation of noise power, it is convenient to
introduce Fourier transformations in time of all field quantities in equations 18 and
19. In the present case all random time functions are stationary and, strictly
speaking, they do not possess Fourier transformations. However, this difficulty may
be overcome by constructing a periodic substitute function (Ryrov, 1959; Haus,
1961) according to the definition

F@¢,r, Ty =F(, 1), for — %1 <t < %
and ' :
Fit +aT,xr, T) =F(@,rx, T). (20)

These substitute functions have Fourier transformations of the form
1 (72 . ,
Fo,r, T) — — f Fit, 1, T) e dt. (21)
T)-m2

In the limit as 7' — oo, the substitute functions are indistinguishable from their
originals. The spectral density of any noise process can be obtained directly from
the ensemble average of products of these Fourier components. Thus, the dyadic
spectral density of F is given by
T .
Sp(w, r,¢') =lim o F(o, 1, TVF* (o, ', T))ave, (22)
T—>o 4T
where the symbol * denotes the complex conjugate.
It should be noted that the spectral analysis of the periodic substitute function
leads to a discrete spectrum extending over negative, as well as positive, frequencies.
With lines at frequency interval Af = (1/7') the expression

(2F(o, r, T)F*(w, t', T))avg = 4mAfSg(w, 1, 1'). (23)

may be identified in the limit of large 7' as ‘the mean-square fluctuation of F in
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the frequency interval Af’." Furthermore, for a - stationary time function F
(Brawc-Larierse and ForTrT, 1953),

T
o Flo, 1, TYF¥ (o', 1, T))avg = 0, w £ o (24)
w

Precisely this kind of treatment must be kept in mind in applying the formal
expansion of the Fourier integral and using the spectral amplitude densities in the
study of electromagnetic fluctuation on which the present paper is based.

As a matter of convenience, for a particular physical variable, the lower case
letter is used for the stationary time function and for its periodic substitute function,
while the capital letter is used for its Fourier transform in the following discussion.
For example, it is obvious, from equations (18) and (19), with the aid of equation
(15b) that the Fourier amplitude of the periodic substitute functions is related in
the following manner:

VxE = —jouH (25)
and

VxH =jogE +0-E 4 K. (26)

Suppose that a region of the ionosphere under study is divided into a large
number of sufficiently small elementary volume elements such that within each one
of these elementary volumes the medium may reasonably be assumed to be uniform
at a certain temperature 7,. Strictly speaking these elementary volume elements
should be made to approach zero. On the other hand, they have to be kept large
enough to contain a large number of charge carriers in order that statistical argu-
ments may be applied. A tensor-conductivity description of the medium as given
by equation (15b) is possible only because the current in an elementary volume
depends upon the electric field in the same volume, but not upon its derivatives,
that is, upon the value of the electric field in the neighboring elementary volumes.
In view of this fact, it is quite reasonable to expect that the source current caused
by the random motion of the charge carriers in two neighboring elementary volumes
are uncorrelated. In other words, if r and ¢’ denote the points belonging to two
different elementary volumes, then K(w, r) and K(w, r’) are not correlated and the
dyadic spectral density of K has the form

SK(w’ r, I") - 6(1‘ - rl)’l/)(w: 7.), (27)

where é(r — 1’) is the usual Dirac delta function.

On the other hand, an elementary volume element may be considered as a linear
network containing a noise source in thermal equilibrium and the technique developed
in the theory of linear noise networks (Haus, 1961; VaxworMaOUDT and HAUs,
1962), which makes use of the generalized Nyquist theorem, can be applied. Using
the concept of a linear network, for example, HAus (1961) has obtained a simple
expression for yp(w, r) as follows:

kT o(r)
2

p(w, 1) = [6(w, £) + of(w, )], (28)

where £ is the Boltzmann constant and the symbol dagger (1) indicates the complex-
conjugate transpose of the conductivity matrix o. If the average volume density of
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thermal energy =(r) in J/m3 is introduced, defined as the ratio of the amount
of thermal energy generated within an elementary volume AV to the volume AV,
then from equations (27) and (28) one has

7(r)

Sg(w, 1) = o

[o(w, ) + o (0, )] (29)
and from equation (23)
CK(w, 1)K¥(, 1))avg = 2Af7(r)[o(w, 1) + ot(w, 1)], (30)

which may be given altefnatively in its component form with the aid of equation (17)
as follows:

Q2K (o, 1)K g*(o, 1))ave = 7(r)AfL, (0, 1), (31)
where
I ] ( XZ ) , . 9
aﬂ(w3 7) - 46080 m [aﬂ +.77na[3]! O{'?ﬂ = 13 2: 3’ (3 )
with

1
— 2 2 72 2 72 2 2
= gz [0+ 290+ 22 4 T + (Z° + 1% — 846 cos? 0],

1
- 2 2 72 2 2 2 gin?
log 0. %) (L 4+ 231 + 224+ Y3+ (Z2+ Y 3)G2 sin? 0],

1 7
ly; = T, 7 (L + Z3)(1 + 22 4 Y],
1 .
le = l21 = m [(Z2 -+ Yz — 3)G2 sin 2 8],

113 = l31 = lzs = l32 = 0,

Myy = Mgy == Mgy = Myy = My; =0,

My = —Mgy == E(—I}—Z—) [2(1 + Z3)@ sin 6],
Mgy = —Mgy = Z)—(%I—Z-—) [4(1 -+ Z2)G cos 0]

and

QY, Z) = (Y2 -1 Z% — 1)2 + 472 (33)

It is observed that ¥ =0 when ¢ = 0. In this case, l,; =1 if « = f and
l,; = 0 if « 5 B, while m,; becomes zero regardless of whether « = f§ or « # f.
This suggests that the tensor {L,;} appearing in equation (31) becomes a scalar and
the medium becomes isotropic. This is perfectly reasonable since when G = 0 the
geomagnetic field is completely absent.

It is also interesting to note that for the case

Y24 72 =3 (34)

l.p again becomes either equal to unity or to zero according to whether « = f or
o 7%= P and

— — 1 1
Myg = —Mgy = 3G sin 0
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and
Moy = —ilgy == —{.cos 0. (35)

3.2 Time average thermal noise power radiated

In view of the fact that for the periodic field the average time rate of change of
stored energy is zero, the total average power radiated from a system of a current
may be given by (STrRATTON, 1941)

szﬁﬁ-dS:—}ReJ‘ (B-I54V, (36)
s 2 4

where p is the Poynting vector, Thusradiation can be calculated either by integrating
the normal component of the Poynting vector over a closed surface § including all
sources or by integrating the power expended per unit volume over the current
distribution. In the present discussion the latter approach is taken.

Keeping in mind that the concern here is with the random current distribution
and since the time average power radiated per unit volume, w(w, ), is given by

w(w, 1) = LRe[K* - E],  W/m?, (37)

in which K is the cause and E is its effect, and with the aid of equation (9), w{w, r)
becomes

w(w, 1) = §RJK* - (y - K)] = $R[K1yK]. (38)
The substitution of equation (11) into equation (38) yields_

)/
w(o, ) = 5 UG + KGKp* + KoK y¥) (39)
04

On the other hand, with the aid of equations (31) and (32), the thermal noise power
generated per unit volume, per unit bandwidth, wy(f, 7), may be given as
72
wo(f, 1) = kT (I_:I——Z_Z) [y + loe + L], (40)
where I3, lpy and ;5 are given in equation (33). ‘
It isinteresting to observe thatw,given in equation (40) does not depend explicitly
upon the electron number density N, since it does not contain the parameter X.

4. OBSERVATION .OF THERMAIL, RADIATION FROM THE IONOSPHERE

The rigorous determination of the radiation intensity within the emitting region
of the ionosphere must be based on the study of the electromagnetic wave propa-
gation in an anisotropic absorbing medium, in which each volume element can act
as an emitter as well as an absorber of the thermal radiation. - However, this problem
is not discussed in the present paper,

Nevertheless, it is of interest and of a considerable practical importance to know
" about the characteristics of noise power received from the ionospheric thermal
radiation at a detecting antenna located outside of the source region.

In view of the fact that the relation of the radiation fields to their sources is
most readily found in terms of potential functions, and since the information with
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regard to some statistical properties of the random source current function X is
available from Section 3, the retarded vector potential function is introduced here
and expressed in complex form as A(w, x,)e’”, with

LN f"i K(wa ma,)exp(_jkOR(xwxa’)) '
Alw, x,) = 47TL Rlo, o) av’,

(41)

where x, and x,” denote the coordinates of the observation point and the source
point respectively, and R(x,, z,’) is the distance between them. V (z,')is the volume
of the source region under investigation and k, is the wave number. In the present
discussion z, is taken in the.air and 2, is taken in the ionosphere.

It should be observed that equation (41) signifies superposition of the solutions
of the inhomogeneous wave equation

V2A + kA = —K, (42)

where ky* = w?uyg, and corresponds to a source at the point z,” given by K =
Cé(x, — '), with d(x, — z,”) being the usual Dirac delta function. On the other
hand the retarded scalar potential function ®(w, x,) is related to the vector potential
by (STrATTON, 1941)

V-4 +joued =0, (43)

which expresses the idea of conservation of charge. It should be noted that equation
(43) is valid in free space (air) whereas it is only an approximation in a region of the
conducting medium in which |o/jws,| < 1.

It is well known that the electromagnetic fields at an observation point z,,
taken in air, can be derived from these potential functions by

E= —-V0 — juA (44)
and
H= 1 V X A, , (45)
Ho

where the spatial differential operator V should be understood as V,_, which only

operates on the function of #,. The utilization of potential functions is particularly
convenient because space differentiation V, under the sign of the volume integration,
does not touch K(w, z,”) and thereby the field intensities E and H in the same
manner do not contain derivatives of K.

Upon substitution of equations (41) and (43) into equations (44) and (45) and if
only a 1/R dependent radiation field is taken into account, the electric and magnetic

fields may be written as
o—kR

f [k x (K x k)] av’ (46)

jwa4
and
1 —-jk ‘R
H=— (K X k)
47

av’ (47)

in which the propagation vector k = nk, is introduced and the unit vector n is
defined as B/ R so that k and R are in the same direction.
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The electromagnetic fields given by equations (46) and (47) can be considered as
the random thermal electromagnetic fields since their source function K 'is a random,
statistical quantity. The time average power flow density at the observation point
2, may be considered now with the aid of the Poynting vector defined as

P = L{Re[E x H*]. (48)

It is not difficult to show that the substitution of equations (46) and (47) into
equation (48) yields

- koA f

Mo, z,) =

kTOXZ] T(z,, z,”)
2! > Ya ' 4
o |, e o) [1 + 7 B e (49)

where A is the free-space wavelength, Z, X and 7') are functions of the source point
coordinate z,” and I'(z,, x,’) is defined by

T(@, 2,) = (1 — ¥y + (1 — 50y + (1 — n3®)lgy — 2nympl;,, (50)

in which n,, n, and n; are the components of the unit vector n along r-, 6- and
g-coordinate axes, and Iy, l,, I3 and I;, are given in equation (33).

It should be observed that equation (49) is based on the concept that the radiation
intensity in any solid angle can be treated as energy, transferable in a bundle of
plane, nonextinguishable waves whose normals are included in the solid angle. In
a homogeneous isotropic medium the direction of the vector of energy flux coincides
with the wave normal (Ryrov, 1959). The unit vector n(z,, x,’) indicates the
direction of propagation of the wave orginating at the source point ,’.

. Since the time average Poynting vector p(w, 2,) is determined, the noise power
received from the ionospheric thermal radiation at the receiving antenna can be
obtained by taking a proper surface integral of P(w, x,) over the aperture of the
antenna A,,

Po) = L B(w, ;) - ds, (51)

where ds = n, ds, with n, being a unit vector normal to the differential surface area
ds.

It should be noted that P(w), given by equation (51) can be regarded as the
available noise power at the receiving antenna in the frequency interval between f
and f + Af. On the other hand, from an elementary antenna theory (Kraus,
1950), if the receiving antenna is properly oriented for maximum response, the
available noise power P(w) can be given by

P(0) = A,py(w), (52)

where py(w) is the time average Poynting vector at the position of the receiving
antenna and 4, = (42)/Q, is the effective area of the antenna, with Q, being the
solid angle through which all of the power radiated would stream if the power per
unit solid angle equaled the maximum value of radiation intensity over the beam
area.

In order to determine p(w, x,) from equation (49) the source region V,, which is
determined by the beam area of the receiving antenna, must be specified and the
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integrand must be expressed as a function of conveniently chosen coordinate vari-
ables. Although the parameter /,; was expressed in spherical coordinate variables
(r, 0, @) in the previous section it is not difficult to see that the integration can
conveniently be introduced with respect to the solid angle, subtended at the observa-
tion point, instead of carrying out the volume integration in a spherical coordinate
system as in equation (49); this is illustrated in the following discussion.

#

(b)

Fig. 1. - Coordinate system and definition of variables. (a) Ceomagnetic spherical
coordinate system. (b) Geometrical relation between the source points @, and the
observation points @,.

If dQ and dQ, denote, respectively, the differential solid angle subtended at the
origin (the center of the Earth) and at the observation point (on the surface of the
Earth) by a source located at z,’, then it is not difficult to see that with the aid of
of Fig. 1

R%Q,
[(n-uy')
where u,’(x,’) is the radial unit vector at the source point. The radial component
of the noise power flow density received by the antenna located on the surface of
the Earth may be given as follows, with the aid of equation (49):

_ koAf [ [kTOXZ}
2)) = ; R ) = AT 4
Dy, @) = Do, @) - W(@,) = 573 fho La Y@ @) | T | Tddh,  (54)

— 240, (53)
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where

n(xa) xal) ° ul(wa) _ COS Py
m(x, ) «w'(@,)]  cos gy
and Q, is the solid angle representing the beam area of the receiving antenna and
r = @ + h is used in the derivation. The angles y, and y,” appearing in equation
55 are those between n and u, and between n and u,’ respectively, and they are
related geometrically as is shown in Fig. 1.

If an antenna of sufficiently small beam area is used for measurement, some
approximation can be made in equation (54). That is to say, if €, is sufficiently
small, then the unit vector n{z,, z,") may be considered as a constant vector within
the solid angle Q,, and may be replaced by n(z,, g,), where g, is the representative
source point lying on the axis of , and the factor y given in equation (55) becomes
independent of the source point x,’ also. Therefore from equations (562) and (54), the
expression for the available noise power at the receiving antenna is

Y, @) = (55)

_ kAf (M [kTOXZ] - ‘
PT(O)) = 2 yj};o 1—_}‘_—2—2 F (lh, (56)
where
- -ﬁ * ul(xa)
G = = 57
B, (57)
and

T = (1 — 3lhy(h) + (1 — ig2)lgg(h) + (1 — 7ig)lyg(h) — 2ityiighyy(h).  (58)

It is observed that for the case of a vertical incident measurement, u; = u,’,
7i; = 1 and #i, =iy = 0, so that T’y =1, + l;; and § = 1. Consequently the
available thermal noise power at the receiving antenna per unit bandwidth, Py(f),
for the case of vertical incident measurement may be given by

mIET X7 =

It is interesting to note that for a special case ¥ = 0 (corresponding to the absence
of a geomagnetic field), l,, = l;; =1 and T, = 2. Furthermore, if Z2 < 1, then
equation (59) is reduced essentially to the same form as that used by many workers
(PAwsEY et al., 1951; GARDNER, 1954; DowpErx, 1960; LITTLE ef al., 1961; DAvIs,
1960; WHITEHEAD, 1959).

5. CoNOLUDING REMARKS

The attention has been focused in the present study on the effect of colliding
electrons under the assumption that the effect of the motion of ions in the region
of the ionosphere of interest is negligible.

The general expressions derived for w,, the thermal noise power generated per
unit volume, per unit bandwidth, from any given source region ¥, of the ionosphere,
and for Py(f), the available thermal power per unit bandwidth received at the
detecting antenna due to the radiation from V,, are valid for all frequency ranges
and for most regions of interest in the ionosphere, i.e. where the electron collision
process plays a major role. Once ¥, is specified, the profiles of T'o(k), Ny(h) and
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»(h) obtained from the experimental observations (NicoLrT, 1959; TrHOMAS, 1959;
KanEg, 1960a, 19600; Ararv, 1959; ScuLaPp, 1959) can be used for the evaluation
of wy and Py{f). Thus the detailed information with regard to the spectral distri-
bution of the thermal energy radiated from the ionosphere can be obtained with
the aid of a numerical integration of the expressions derived in the present paper.

It is indeed desirable that the present theory be tested and verified with some
sort of experimental observation, e.g. a laboratory experiment. In other words, if
the ionospheric plasma condition can be realistically represented with a laboratory
experiment, then it will permit a study of the characteristics of thermal radiation
in great detail and a test of the soundness of the present theory.

It should be pointed out that the present analysis may not be as rigorous as a
microscopic treatment using the Boltzmann transport equation with the proper
collision integral. However, this method of analysis does offer a simple and direct
way of analyzing the thermal radiation from an anisotropic ionized medium and
its radiation characteristics.

Acknowledgements—The author is very grateful to Professor J. E. Rows for his
contributions and for reading the manuscript. The work was supported by the
National Aeronautics and Space Administration under Grant No. NsG 696.

REFERENCES

ATaEV O. M. 1959 Radio Engng Electron., Wash. 4, 37.

Brawc-LarierseE A. and ForteT R. 1953 Théorie des Fonctions Aléatories, p. 382,
Masson, Paris.

Davis K. 1960 J. Geophys. Res. 65, 2285.

Dowprx R. L. 1960 J. Atmosph. Terr. Phys. 18, 8.

GarpnEr F. F. 1954 J. Atmosph. Terr. Phys. b, 298.

Havus H. A. 1961 J. Appl. Phys. 32, 493.

Kaxe J. A. 19600  J. Geophys. Res. 64, 133.

Kravs J. D. 1950 Antennas, Chapt. IIL., p. 41. MeGraw-
Hill, New York.

Litrie C. G., Lerrarp G. M. and 1961 J. Atmosph. Terr. Phys. 28, 275.

PARTHASARATHY R.

Moraan M. G. 1959 Proc. Instn. Radio Engrs. Aust. 47, 131.

NicoreT M. 1959 Proc. Instn. Radio BEngrs. Aust. 47, 142,

Pawsey J. L., McCreapy L. L. and 1951 J. Atmosph. Terr. Phys. 1, 261.

GaepNer F. T,

Ryrov S. M, 1959 Theory of Hilectrical Fluctuation and
Thermal Radiation, Transl. Electronic
Research Directorate, U.S. Air Force,
Bedford, Mass.

ScrLAPP D. M. 1959 J. Aitmosph. Terr. Phys. 16, 340.

STRATTON J. A. 1941 Electromagnetic Theory, p. 429. McGraw-
Hill, New York.

TroMmas J. O. 1959 Proc. Instn. Radio Engrs. Aust. 47, 162.

VANworMHOUDT M. and Haus H. A, 1962 J. Appl. Phys. 88, 2572.

WaITEREAD J. D, 1959 J. Atmosph. Terr. Phys. 16, 283.




Journal of Atmospherie and Terrestrial Physics, 1966, Vol. 28 pp. 783 to 788. Pergamon Press Ltd. Printed in Northern Ireland

SHORT PAPER

In future, Short Papers will replace the Research Notes which appeared

wn previous Numbers. For details about Short Papers see “Message

Fromthe Editor-in-Chief” (Vol. 27. No.10,p. 1033, 1965) and ““Information
for Contributors” (Inside back cover)




Journal of Atmospheric and Terrestrial Physics, 1666, Vol. 28 pp. 783 to 788. Pergamon Press Ltd. Printed in Northern Ireland

SHORT PAPER

In future, Short Papers will replace the Research Notes which appeared

wn previous Numbers. For details about Shori Papers see *Message

Fromthe Editor-in-Chief** (Vol. 27. No.10,p. 1033, 1965) and ““Information
Jor Contributors” (Inside back cover)

Characteristics of ionospheric thermal radiation

H. C. Hsiern
Electron Physics Laboratory, Department of Electrical Engineering,
The University of Michigan, Ann Arbor, Michigan, U.S.A.

(Recetwed 5 November; revised 30 December 1965)

Abstract—A theoretical observation of the characteristics of ionospherie thermal radiation
is made using a linear theory, based on a macroscopic concept with the aid of fluctuating
electromagnetic field theory. The thermal noise power generated in the ionosphere per unit
volume, per unit frequency bandwidth, and the available thermal noise power at a receiving
antenna per unit frequency bandwidth are caleulated. The spectral distributions of ionospheric
thermal radiation are obtained and discussed in detail.

A study of the caleulated power level of the thermal noise generated in the ionosphere shows
that it is exceedingly low and decreases rather rapidly with an increase of frequency f. A large
portion of the noise signal generated appears to be in the frequency range of f < 107 ¢/s, with
the microwave noise signal being negligible, and appears to come mainly from the region between
60 km and 100 km of the ionosphere. Furthermore, the study reveals that the available noise
power at a receiving antenna depends upon the geographical location of the antenna in general
and that the power level is higher in the equatorial zone than in the polar cap zone.

For a noise signal frequency of less than 10% ¢fs, the power level increases monotonically
with an increase of polar angle 6 from § = 0 and reaches its maximum value at 6 = 90°, where
it is at least a hundred times greater than at 0 == 0. For a noise signal with a frequency of
109 ¢/s, the available noise power has its maximum at § ~ 50°, where the power level is com-
parable to that of a noise signal with a frequency of 10° ¢fs. For a noise signal of a frequency
above 5 x 10°¢fs, the angular dependence disappears.

1. INTRODUCTION

Ix A recent theoretical study made by the author on ionospheric thermal radiation,
the expressions for w,, the thermal noise power generated per unit volume, per unit
frequency bandwidth, and for P, the available noise power at the receiving antenna
per unit frequency bandwidth for the case of vertical incident measurement, have
been derived, based on a macroscopic concept with the aid of the fluctuating electro-
magnetic field theory using the Maxwell-Langevin equations. It is the purpose of the
present paper to estimate theoretically the radiation characteristics of ionospheric
thermal noise by investigating the expressions for w, and P, with the aid of experi-
mentally observed available data (e.g. LEGALLEY and ROSEN, 1964; Jackson and
Kaxg, 1959; Jacksoxw and SEppoxw, 1958) for the profile of the electron number
density.
6 783
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The expressions for w, and P, are given as follows (the derivation of these expres-
sions is presented in Hsien (1966)):

72
wy(fs 7, 0) = kT (W)(l + 2lg;) (1)
and
ho+ Ak kT XZ
P 0 = [ () tho + 1 @)
where

Lolf,r, 0) = LT 20+ 2 + V) 4 (Y2 + Z2 — 3) *sin? 0

22\/5 ¥ - (Y2+ZZ——1)2+4,ZZ R
(A +ZH(1+ 22+ Y?)

ZSB(f;r: 0) - (Y2 + Z2 o 1)2 +4Z2 ]

= (2
w 3
. __Noez

- 3
me,

Wy

2 wbz_ 2 2
Y2 =1{—} = G*1 + 3 cos? 0],
w

z=",
w
3
G=~%£(g) land
3 mi\r/ w
r=qa - h. (3)

In the above expressions, » and 6 are the radial and polar angular variables,
respectively, in the geomagnetic polar coordinate system whose origin is located at the
center of the Barth. The electronic charge e is taken as a negative value and m is the
electronic mass. w, and w, are the electron plasma and gyrofrequencies, respectively,
and o is the angular frequency of the noise signal under consideration. c¢ is the speed
of light in vacua and ¢, is the dielectric constant of vacuum. 2 is the height above
sea level; fisthe radiation frequency; a is the radius of the Earth; M is the magnet-
ization of the Earth; and % is the Boltzmann constant. Finally N, T, and » are
electronic number density, temperature and collision frequency, respectively.

2. Asymeroric EXPRESSIONS

‘When the radius of the Earth a is taken as 6370 km and the magnetization of the
Earth M is taken as (0-935)/(47) Aj/m? (MorcaN, 1959), the factor Q(w, 7) given in
equation (3) can be approximated by

695 x 108 h k
Consequently G is practically invariant with respect to & for the range of height up to
200 km. On the other hand, Z, being equal to »(%)/w, varies considerably with A in
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the same region of the ionosphere. It is of interest to note that when the parameters
Z and @ satisfy the following conditions:

472 L1, 3 LQG? (Case A) (5a)
or
4722 <1, 4G22 <1 {Cage B), (5b)
Equation (1) takes the following simple form:
wos(fy b) = kT Zs? (6a)
or
woalfy b) = 3kT,Z,2 (6b)
On the other hand, for |Ah| < Ay, equation (2) takes the following form:
AR
Pos(f, 0) = £(0, ho)k Ty X532, (7) T (7a)
3
or
h
Polf, 0) = 2T X, 2, (AT) ™ (7b)
4
with
2 4 G%sin?
50(9’ ho) - (8)

G*(1 + 3 cos? 6)’
where the subscripts 3 and 4 are introduced in w, and P, to indicate the fact that
Case A and Case B are being considered respectively. Furthermore, for the region of
the ionosphere between 85 km and 200 km, the range of frequency which satisfies the
conditions (5a) and (5b) can be given as follows:

16 me < f < 42 me, for Case A (9a)
or
14 kme < f, for Case B. (9b)

Thus equations (6a) and (7a) can be regarded as the asymptotic expressions for w, and
P, for the radio-frequency range and equations (6b) and (7b) are the asymptotic
expressions for the microwave-frequency range respectively.

3. CALCULATION

It is easily seen that once the electron temperature 7, number density N, and
collision frequency » are known, calculation of the quantities w, and P, is straight-
forward. Unfortunately the exact knowledge of T, N, and » as functions of position
is not available at the present time. In view of the fact that many of the results of
radio observation can be explained by assuming that the ionosphere is horizontally
stratified, that is, that the electron density and collision frequency are functions only
of the height %, this assumption is adopted for the present investigation. Furthermore,
it is assumed that under the thermal equilibrium conditions the electron temperature
T, is equal to the background gas temperature 7',. The midday mean electron
number density profile N(), based on seven experimental observations—one by
partial reflection technique, two by cross-modulation technique and four by rocket
experiment—is used for the D-region (60 km~90 km) and the other profiles, based on
two rocket observations, are used for the height range between 90 km and 180 km.
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The value of the average electron collision frequency » with the neutral particles
and ions can be given approximately as follows:

V= <'Vm> + <7"ez'>’ (10)
where (v,,) and {»,,) denote the average electron collision frequency with neutral

particles and with ions respectively (e.g. SHRAROFSKY, 1961). They are given in
terms of atmospheric parameters as follows:

(r,,(h)) = 1-9944n,, T, x 10~7,  for h < 180 km, (11)
where 7,, is the number density of air, and '
(v,;) = 8-375N log A x 1078/ T3> (12)
with
A = 1:24 x 107 (T3/N)2, (13)

where N is the ion density and 7', is the electron temperature. In the present calcula-
tion it is assumed that Ny, = N and Ty = 7',. », given in equation (10), is calculated
with the aid of tabulated data for ny, and 7', (e.g. Karnmann-Buz, 1961). The mks
system of units is employed in the present study.

4. DiscussioN oF REsvuLTs

The results of calculation of the noise power spectrum show that for a given value
of 6 and h, w, decreases with an increase in f as shown in Fig. 1 except in the vicinity
of f = 10° ¢/s. The rate of decrease is higher in the h.f. range than in the Lf. range.
There is a hump, i.e. a relative minimum and a relative maximum, in the range

1078 [— ;/—h =60 km
1020}

10—22 o

10—24_,

10728

10728 |—
100 80

w_(W-sec/mS)

o]

10-33 | | ! [
0% 10® 108 10 10
RADIATION FREQUENCY, f (I/sec)

Fig. 1. The frequency spectrum of the thermal energy volume density
with height as parameter for § = 45°.
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108 < f < 5 X 10° ¢/s and this hump appears to be largest for § = 45° and it tends to
disappear for ¢ = 90°. ’

It is of interest to note that for the frequency range specified by the inequalities
(9a) and (9b), equations (6a) and (6b) both suggest that w, is inversely proportional to
the square of the frequency f and directly proportional to the square of the collision
frequency » for the region between 85 km and 200 km of the ionosphere. In addition,
a comparison between equations (6a) and (6b) shows that at a given height 4, since
dwy/df = 3dwys/df, the rate of decrease of w, in the h.f. range is three times greater
than in the 1.f. range (e.g. see the case of & = 100 km in Fig. 1). Thus the observation
made in Fig. 1 on the behaviour of w, can be predicted quite well by the asymptotic
expressions for w, given by equations (6a) and (6b). It should be pointed out, however,
that equations (6a) and (6b) are not applicable for a frequency range in the vicinity of
f = 10° ¢/s and therefore a prediction of the behaviour of w, in this region has to be
made by studying equation (1).

On the other hand, as shown in Fig. 2, for a given f < 108 ¢/s, P, increases rapidly
with an increase of § in the region 0 < 0 < 20° and increases gradually in the region

10°%°

f=10%

10722

10°24

lo-26

e 10—28
@
{
E
z f=5x10°
G_O
10730 —
f=1.5 x10°
o3 ! 1

30° 60° 90°
POLAR ANGLE, 8 ’
Fig. 2. The polar angular spectrum of available noise power at the receiving

antenna per unit frequency bandwidth from the source lying between
60 km and 180 km.

6 > 20°, then reaches its maximum value at § = 90°. Fora givenf > 7-5 x 10%¢/s,
P, becomes independent of 8. However, for the noise signal with f = 10%¢/s, P,
increases gradually from 6 = 0 to about 30°, then increases rather rapidly to reach
its maximum value at about 6 = 50°, and finally decreases as § increases further.
The values of P, in the region of § = 0 and in the vicinity of 6 = 90° are about the
same. The maximum value of Py at 6§ = 50° for f = 10° ¢/s is comparable to that
for f = 10%¢/s. It should be noted that the asymptotic expression (7b) which
predicts P, for the microwave range is independent of 6, while equation (7a) indicates
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that P, for the radio-frequency range, does depend upon 6 in the manner specified by
equation (8), which is consistent with the above observation made on the behaviour of
Pyin Fig. 2.

5. CoNCLUSIONS

The spectral distribution of ionospheric thermal noise power has been obtained.
At a given position (&, 0) in the ionosphere there is at least ten thousand times more
thermal noise power per unit volume, per unit frequency bandwidth, generated in the
frequency range 5 X 10* < f < 108 ¢fs than in the range f > 10° ¢/s. w,, the thermal
noise power generated per unit volume, per unit frequency bandwidth, decreases
monotonically with an increase in the height %, which is reasonable in view of the fact
that the electronic collision process plays a major role in the type of radiation under
consideration, and since the collision frequency »(h) decreases with an increase in
height. w, appears to be independent of the polar angle 0 except for the case of
f = 10? ¢/s in which it has its maximum value at 0 = 45°.

The observation of the spectrum of the available noise power at the receiving
antenna Py(f, 0), per unit frequency bandwidth, with the source regions between
60 km and 180 km of the ionosphere, shows that in general it decreases with an
increase of the frequency f and increases with an increase of the polar angle 0.

It should be pointed out that most of the uncertainty in the present calculation
arises from a lack of complete knowledge concerning the electron temperature and the
electron distribution function. Furthermore, the results shown above are based on the
ideal assumption of a Maxwellian distribution, and equal electron and gas tempera-
tures. Consequently the results of the present study should be regarded as a good
qualitative analysis of the thermal radiation from the ionosphere rather than a
rigorous quantitative analysis.

The calculations indicate that the power level of the thermal radiation originating
in the ionosphere is indeed exceedingly low, a fact which is commonly believed. For
example, at 0 = 90° for f = 10° ¢/s, P, is of the order of 1020 W ¢/s and for f = 106
c/s, it is of the order of 1022 W ¢/s, which might not be detectable without the aid of
an exceedingly sensitive detecting system. However, it is of interest to observe the
dependence of P, on the polar angle 6, as well as on the radiation frequency f.
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Abstract—The dispersion relation for wave propagation in a homogeneous, electrically neutral
electron gas subject to crossed static electric and magnetic fields is derived using the coupled
Maxwell-Boltzmann—Vlasov equations. The cutoff condition for transverse circularly polarized
electromagnetic waves is obtained from the derived dispersion relation. The variation of the
cutoff frequency w, with the static electric field B, magnetostatic field B, the electron number
density N and the electron gas temperature 7' is discussed. For example it is shown that for a
given value of B, and IV, either a decrease of the electron gas temperature 7' or an increase of
static electric field K will cause the cutoff frequency of the left-hand circularly polarized wave
to increase while the cutoff frequency of the right-hand circularly polarized wave decreases.
A possible application of the theory to the study of electromagnetic wave propagation in the
region of ionospheric plasma, where both static electric and static magnetic fields are present, is
indicated.

1. INTRODUCTION )

It 18 well known that the propagation of electromagnetic waves in a magnetoionic
medium can be characterized by the Appleton equation. A detailed discussion on
this subject has been given by Rarcrirre (1959). The magnetoionic medium is
defined as one in which free electrons and heavy ions are situated in a uniform
magnetic field and are distributed with statistical uniformity, so that there is no
resultant space charge.

The cutoff conditions for the circularly polarized electromagnetic wave in a
cold plasma have been discussed in detail by HEarp and WrARTON (1965). Recently,
in the course of investigating the effect of a transverse static electric field on the
propagation of the circularly polarized electromagnetic wave in a finite temperature
plasma, this author (Hsier, 1966) has shown that the presence of a static electric
field may cause the cutoff frequency of the electromagnetic wave to shift. The
purpose of this paper, therefore, is to discuss the cutoff conditons for the circularly
polarized waves in a homogeneous, electrically neutral electron gas, subjected to
crossed electrostatic and magnetostatic fields. This system is referred to as the
electro-magneto-ionic medium. The thermal motion of an electron is considered
although ion motion and collision effects are assumed to be negligible. The present
discussion is based on a small-amplitude, one-dimensional analysis in which all
time-varying quantities are assumed to have harmonic dependence of the form:
exp [j(wt — k2)], where w and k are the wave angular frequency and propagation
constant respectively. z and ¢ denote, respectively, the spatial and time variables.
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2. DispERSION RELATIONS
Consider all quantities of interest to be composed of two parts; the time-indepen-
dent part denoted by the subscript “0”’ and the time-dependent part denoted by
the subscript ““1”, e.g. the magnetic flux density B and electric field intensity E are
written as

B =Byz) - Bz, t) and E = Eyz) + E;(z, 1)
and the electron distribution function f is written as

f=Jo(z: V) + filz, v, ).

Suppose that the applied static electric field E, and magnetostatic field B, are
directed along the positive y- and positive z-directions respectively.

The dynamic electromagnetic fields in the electron gas are governed by Maxwell’s
field equation, which is expressed in the following manner:

(%)
e,

By = oy ) o h A
By, = [opam, 0
we,

where ¢ = 1/4/(pg,) is the speed of light in free space, and u, and ¢, denote the
permeability and dielectric constant of vacuum; d% = (v, dv, dg dv,) is a volume
element in velocity space. On the other hand, the electron distribution is described
by the Boltzmann—Vlasov equation, which is written as

; 0 gf} J%) je __ (afl la_fl) —ie
(j(w_k%)+wzgg;)f1_a_(6v,+v,a<p e a, a_vz~v,6<pe
_° oy 2 oy g Yo
- m M-(fo)E—ew + m M+(f0)E+e ? + mElz a’Uz H (2)
where
E:F = %(Elw + jEly)’ B:F = %(Blw + jBly)’
T R
a’:F - :Fj 2m s W, = m 5
o kv,\(0fo _ J afo) kv, afo}
M(fo) = [(1 —”a‘)—)(%—r:f:;)‘r—a(—p +?avz )
¥, = ¥, COS @, v, = v, 8in ¢. (3)

Here E_ and E, denote the left- and right-hand circularly polarized components of
electric field respectively. K, is the longitudinal component of electric field. w, is

the electron cyclotron frequency.
Suppose that the time-varying distribution function f; is written in the form.

2, t,0,, 0, @) = f(2, 8,0, 0,)67" + f.(2, 8, v, 0,)e7 9 + g(2, ¢, v, v,), 4
1 ‘p z + T T
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in which the first, second and third terms of the right-hand side can be regarded as the
left-hand circularly polarized, the right-hand circularly polarized wave, and the
longitudinal components of the distribution function respectively. Then in view of
the fact that equation (2) must be valid for an arbitrary value of ¢, the substitution
of equation (4) into equation (2) yields a system of equations, expressing the functions
J-, [+ and g in terms of the electric field components K_, K, and £, as follows:

f— = knE— + k12E+ + k13E1z>
f+ = 7521E— + k22E+ + k23E1z,

g = kali_ + kB, + kgyBy, (5)
" where
d e, afo)
b — —‘7 m M_(fo) b =0 b a = ov, (av
11 — (b + (Dz) E] 12 7T Y 13 — b(b + wz) ]
. e e g
—j = M (f,) - “+ ( fo)
fes — 0 b — m b ov, \dv
B b s
£ ey _9 8-
gt 2 ML)
. b +w) T T bh—ow)
. © 9fy ' e d 9
mov, . .4a_a, m ov, v, .
k33 _ b ..7 'U,- b(b2 _ wzg) bl b == ((U - kvz)' (6)

Upon combining equations (1) and (5), the following set of algebraic equations govern-
ing the electric field components is obtained.:

E_ = RBpE_ + Rl + Ryl
B, = RyE_ + RpE, + RyH,,,

Elz - RalE— + RazE+ + Rasz (7)
where
(we)
Ry = _ czkz)f f (]511 + kye % + &y, ~9¢) do dv, dv,,
we
_] 2

R,y = mf f f (k1,877 + ko + Ky e™®) do dv, dv,,

—‘_7@ 2
Ry, = f f (k077 + oo™ -+ k) dop do, dv,,

wEy

in which 7, p, and g take the values of 1, 2, and 3. The coefficients k,, are given in
equations (6).
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The dispersion relation for the system is readily given from equation (7) and is
expressed as

(Byg — 1) Ry By
D(w, k) = | By (Bop — 1) Ry = 0. (8)
Ry, By, (Bg3 — 1)

It should be noted that equations (7) indicate the possibility of coupling between the
characteristic modes. Once the time-independent distribution function f, is known,
then the coefficients k,, are determined so that R,, can be evaluated. f,, which must
satisfy the time-independent part of the Boltzmann-Vlasov equation for the case of a
homogeneous, electrically neutral electron gas subjected to crossed static electric and
magnetic fields, can be written in a Maxwellian form as follows:

fO == Ny 6XP {‘—U'[(vm - u)z + vyz =+ vzz]}’ (9)

where o = (m/2KT) and u = (E,/B,). K is the Boltzmann constant, 7' and « denote
the temperature and drift velocity of an electron respectively, and n, is the normaliza-
tion constant.

Based on equation (9) the elements of the determinant in dispersion relation (8)
can be given as follows:

Rll:(1X )[ —iY+ (5+(1__4—1—YF)}’
B = (1 31 Y>) O e 5

V(o)X

R =50 25 (2 =3) + }
al

R”:(lafn)[(l—j )+ 1= 1+Y”’
B = a — )[

(o o))

- -y s
By (o) 4 022
By =/ X(l gquY)z)
B = X(1+§8 Y)z)

e

1—7

(10)




Cutoff conditions for transverse circularly polarized electromagnetic waves 1223

w, 2 w c2k?
XE - 5 7= - 3 = (_>>
(co) 1 (w) g w?

de e e () m(a)
YT g - =) T k)

and provided that
02 <1, <1 and |4/(av)(1 & Y)*>1 (11)

The assumption that conditions (11) are satisfied is equivalent to assuming that the
drift velocity u is much smaller than the thermal velocity, while the thermal velocity
is much smaller than the phase velocity of the transverse electromagnetic wave.

It is of interest to note that as 6 - 0, R,,— 0, when p = ¢, so that the off-
diagonal terms of the determinant in equation (8) vanish, which suggests that the
coupling between the modes disappears. In this case equation (8) becomes

(Rn - 1)(R22 - 1)(R33 —1) =0, (12)

which in turn yields three dispersion equations for the uncoupled characteristic
modes, as shown in equation (13):

where

X 1 p 1
1:u—mA1+Y+§u+YQ’ (132)

X 1 y 1
1:(1—77)(1-Y+§(1~Y)3)’ (135)
1=X. (13c)

Equations (13) are, rspectively, the dispersion equations for the left-hand circularly
polarized wave, the right-hand circularly polarized wave, and the longitudinal
plasma oscillation. It should be noted that as y — 0, which is the case when 7' — 0,
equations (13a) and (13b) are reduced to the familar expression in the cold-plasma
magnetoionic theory.

3, Tar Curorr CONDITIONS FOR THE TRANSVERSE ELECTRO-
MAGNETIC WAVES

The cutoff of electromagnetic wave propagation occurs when its propagation

constant k becomes zero, in which case # = 0 and y = 0 so that, from equation (10),
B3 = Ryy = Ry = Ry = 0. Equation (8) becomes

[(r — D19 — 1) — 739701 ](By3 — 1) = 0, (14)

where r,, is the value of R, for = 0 and y = 0. Therefore the cutoff conditions
for the transverse electromagnetic wave are given by

(rn — D(rge — 1) — 11979 = 0, (15)
which can be conveniently written as
6%y*(1 — 0)

24

et — (v =), o

X
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where y, = (w,/w,) is the ratio of the electron cyclotron frequency w, to the electron
plasma frequency w, and @ = (wy/w,) with o, being the cutoff frequency of the
transverse electromagnetic wave. Once the values of y, and § are specified, equation
(16) can be solved for 2 so that (wy/w,) is determined. However, the variation of w,

with respect to 6 can easily be observed with the aid of a graphical method illustrated
below:

4 7
1
82y 2(1-8)
i ! Fba= yox“
ll \ Fplx) = y 2 —(x=+4)°
| Yt 4+y02
L A
| AN
| r 2
|
|
i
i
L |
i1 £{x)
|
|
1
|
|
- \\ Fx) FOR 8202
\’/\(Fl(x) FOR 8=0.1
\
A\
\
\\\\\
0 /Xz e sw—— \;
. 1 1
o] ] 2 3

Fig. 1. Illustration of graphical solution of equation (16).

Let F,(x) be the left-hand side and Fy(x) be the right-hand side of equation (16).
If F'; vs. ¢ and F, vs. 2 are plotted in the same plane, as illustrated in Fig. 1, then the
intersections of the two plots provides the real roots of equation (16). Once y, is
given, the curve of Fy(z) is determined, and if ¢ is also specified, then F,(x) is com-
pletely determined. Thus the intersection point of the two plots is readily determined.
It should be noted that when § = 0 the F, curve coincides with the z-axis, and if its
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intersections with the F, curve are denoted by @, and @,, then they are given by

] YR 272 :
v, = yﬁ*«é(yo R mrzyoﬂ/g)yo 9 (17)

@, determines oy, the cutoff frequency of the left-hand circularly polarized wave, and
a

3— $:0,01,0.2,0.3
ALMOST
COINCIDE

3013(1 2

w
Yo& @y
Fig. 2. The plot of (wgfw,) vs. (w,[w,) with § as parameter.

x, determines w,,, the cutoff frequency of the right-hand circularly polarized wave.
It is easily seen from Fig. 1 that an increase in the parameter § leads to an increase in
g, but to a slight decrease in wy,. Numerical illustration of equation (16) is given in
Figs. 2-4. The normalized cutoff frequency @ = (w,/w,) as a function of the norma-
lized cyclotron frequency y, = (w,/w,) for various values of the parameter 6 =
(m[2KTYEy?|By?) is shown in Fig. 2. The plot of x vs. § for various values of y, is
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shown in Fig. 3, and the plot of (w,/w,) vs. (w,/w,) for various values of 8 is shown in
Fig. 4.

It is of interest to observe that in Fig. 2 2, increases with y, while x, decreases
with 7, in the range of small y,, for the case ¢ > 0-1, and increases with y, in the
range of large y,. A change in the value of § appears to affect the value of z, signi-
ficantly, but has only a slight effect on @,. The variation of @, with ¢ for a given value
of y, is shown in Fig. 3. 2, appears to increase with 6 faster for the larger value of y,
than for the small value of y,. It is observed in Fig. 4 that for a given B, and §, the
cutoff frequency of transverse electromagnetic waves increases with the electron
density monotonically. In view of the fact that ¢ is proportional to the square of the
static electric field H, and inversely proportional to the temperature 7', the above
observations suggest that for a given B, either a decrease in 7' or an increase in £,
will cause wg, to increase while w,, decreases slightly in the range of the value of y,
chosen.

4. CoxncrLupinG REMARKS

It should be noted that the cutoff frequency w, in the cutoff condition, equation
(16), is expressed in terms of the electron cyclotron frequency w,, the electron
plasma frequency w,, and 6 which is the square of the ratio of the electron drift
velocity (H,y/B,) to the thermal velocity /(2K T |m). Since w, is proportional to the
static magnetic field B, and w, is proportional to 4/N, with N being the number
density, equation (16) gives the relation between wy, B, B,, N and 7. Suppose that
E,, B,, and N are known in the region of an electron gas under consideration;
then by observing the cutoff frequency of a circularly polarized electromagnetic wave,
the temperature 1" of the electron gas can be, in principle, determined with the aid
of equation (16). This suggests a possible diagnostic technique for the measurement
of electron gas temperature.

On the other hand, most analyses of electromagnetic wave propagation in the
ionospheric plasma in the past appear to have been concerned primarily with the
effect of the Karth’s magnetic field, but little or no attention has been given to the
effect of static electric field which may be present in the ionosphere. However, the
existence of electrostatic fields in the ionosphere and magnetosphere has been
postulated by various workers in the studies of various ionospheric phenomena, for
example, in the formation of F-region irregularities (e.g. Dacg, 1957; Farruy, 1959,
1960; SprEeITER and Brices, 1961).

The method of analysis developed in this paper can be profitably applied to the
investigation of transverse circularly polarized electromagnetic wave propagation
along the geomagnetic field line in the ionospheric plasma in which the presence of a
transverse static electric field may be important. For example, a whistler propagating
along the geomagnetic field line between two hemispheres might encounter a region
of the ionosphere or magnetosphere in which a static electric field is perpendicular
to the geomagnetic field. Then a natural question arises as to what is the effect of
this static electric field on the propagation characteristics of electromagnetic waves,
if there is any? To answer this type of question e.g. dispersion equation (8) together
with equations (10) can be used.

Furthermore it should be pointed out that it is not difficult to extend the present
method of analysis to include the effect of ion motion, as well as collisions. In this
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case the element R, in equations 10 and the cutoff condition will be modified. The
application of the theory developed in this paper to the ionospheric plasma is to be
considered in detail in a future paper.
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Abstract—The dispersion equation for a whistler mode propagation in a warm plasma, subjected
to parallel static electric and magnetic fields, is derived by using a linearized coupled Vlasov—
Maxwell equation.. From the derived dispersion equation, the amplitude constant o and phase
constant f of the whistler mode are expressed in terms of static electric field E, static magnetic
field By, the electron number density N,, the electron temperature and the wave angular
frequency w. The effect of a weak static electric field on the propagation of a whistler mode is
investigated in detail; the whistler mode may be amplified or attenuated according to whether
E, and B, are in the same direction or in the opposite direction. The spatial rate of change of
the wave amplitude and phase velocity of the whistler mode increase with |Ey| in general.
For a low-frequency wave propagation, « is directly proportional to By, w, and N, and inversely
proportional to Bg2.

A whistler mode propagation in the magnetosphere is also considered. The results of study
show that the effects of a static electric field on the propagation characteristic of a whistler mode
are likely to be more important in the region of low geomagnetic latitude and high altitude
rather than in the high latitude region.

1. INTRODUCTION

Mosr analyses of electromagnetic wave propagation in the ionospheric plasma in the
past appear to have been concerned primarily with the effect of the earth’s magnetic
field (e.g. Rarcrirrr, 1959, Ginzrurae and BuppEew, 1961), but little or no attention
has been given to the effect of a static electric field which may be present in the
ionosphere. This is perhaps because, in general, the static electric field effects were
presumed to be small. However the existence of a static electric field in the ionos-
phere or magnetosphere has been postulated by various workers in the studies of
various ionospheric phenomena, for example, in the formation of F-region irregulari-
ties (DA, 1957; ALFVEN, 1964; WiLrmoRrE, 1966). It is also believed that the
existence of turbulence in the magnetosphere must necessarily lead to the existence
of a weak static electric field along the direction of the magnetostatic field in the
steady state (RErp, 1965). Recently the experimental evidence of electrostatic
field in auroral ionosphere has been reported by Mozer and Bruston (1967); e.g.,
the component of the d.c. electric field along the magnetic field direction had a
magnitude as large as 20 mV/m. The importance of electric fields to magnetospheric
and ionospheric phenomena appears to be well established by experiment and theory.

In view of the above, a natural question arises as to what, if any, is the effect of an
electrostatic field on the propagating electromagnetic wave along the earth’s
magnetic field line in the ionospheric plasma. The answer to this question will be of
interest since the electromagnetic wave under consideration might be of a man-made
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radio signal used in a communication or used as a diagnostic tool for probing the
plasma condition. It might also be of a radio noise of natural origin, such as whistler
or v.1.f. emission, propagating in the ionosphere.

The whistler mode propagation through the ionospheric plasma has been dis-
cussed in detail by a number of workers (STormY, 1953; RATCLIFFE, 1959; HELLI-
weLL and MoraAN, 1959; SwmrrH, 1961; Scary, 1962; GAriet, 1964; HELILIWELL,
1965). On the other hand, the effect of a static electric field on the longitudinal
propagation of circularly polarized waves in a finite temperature magneto-plasma
has been investigated by this author. It is found that the presence of a transverse
static electric field causes the cutoff frequency of the electromagnetic wave to shift
(Hsiem, 1967¢); in addition, it leads to a coupling of the longitudinal mode to a
transverse circularly polarized mode (Hsiem, 1967b), whereas the presence of a
longitudinal static electric field may significantly affect the amp}itude and phase of
the electromagnetic waves.

The purpose of this paper, therefore, is to discuss in detail the effect of a longi-
tudinal static electric field upon the whistler mode propagation in the magneto-ionic
medium, as defined by Rarcrirre (1959). The thermal motion of an electron is
considered although ion motion and collision effects are assumed to be negligible.
The present discussion is based on a small-amplitude, one-dimensional analysis in
which all time-varying quantities are assumed to have harmonic dependence of the
form exp [j(wt — k2)], where o and k are the wave angular frequency and propaga-
tion constant respectively. z and ¢ denote, respectively, the spatial and time
variables.

2. DISPERSION RELATION

Consider all quantities of interest to be composed of two parts; the time-inde-
pendent part denoted by the subscripts ‘0’°, and the time-dependent part denoted by
the subscript ‘1’, e.g., the magnetic flux density B and electric field intensity E are

written as
B = By(2) + By(2, ¢) and E = Ey(z) + E(z, ?)

and the electron distribution function f is written as

I =Fo# ) + filz v, 0).

Suppose that the static electric field E, and the magnetostatic field B, are both
directed along the positive z-direction. The dynamic electromagnetic fields in the
electron gas are governed by Maxwell’s field equation, which is expressed in the
following manner:

()

J %

B, = P v,eE90f, dPy,
e
Elz CO‘Z‘O f zfl d&v’ (1)

where ¢ = 1/4/(18,) is the speed of light in free space, and u, and &, denote the
permeability and dielectric constant of vacuum; d% = (v, dv, dg dv,) is a volume
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element in velocity space. On the other hand, the electron distribution is described
by the Vlasov equation, which is written as

| : o _e — oy &g, Y
I:ﬂ(w — k) + o, %] fi— fa? m L (fol o + mM+(f° +© o m s ov,’
(2)
where
By = Wy F jBy),  Bx = By F jBu),
(eEO) ( )
a, = \— 1, =
m s
() (@ i )y e 2]
MZF(fU)—{:(l_ )(av i?a +—6_0_51;’
v, = ¥, COS @, = v, sin ¢. 3)

Here F_ and E. denote the left and rmht—lmnd circularly polarized components of
electric field respectlvely E,, is the longltudmal component of electric field. w, is
the electron cyclotron frequency.

Suppose that the time-varying distribution function f; is written in the form

fl(z’ t’ vT’ ,Uz’ (p) :f_‘(z, t’ ,”T’ ’Uz)ejq) +f+(z’ t’ 'UT’ Uz)e_j'p + g(z’ t’ vr’ vz) (4)

in which the first, second and third terms of the right-hand side can be regarded as
the left-hand circularly polarized, the right-hand circularly polarized, and the
longitudinal components of the distribution function respectively. Then in view of
the fact that equation (2) must be valid for an arbitrary value of ¢, the substitution
of equation (4) into equation (2) yields a system of equations, expressing the function
f-, f.. and g in terms of the electric field components £_, B, and #,, as follows:

0
o — ko, + 0)f — a0, B = 7—% M
. 0
o = B, — 0, — 0, o = & DL RC
N

m av

For the case where f_, f, and g have v, dependence of the form e~%%’ in which
o, = (m/2KT), they can be expressed explicitly in terms of B_, B, and F,, as
follows:

) e Ofg
;ﬁM$(fO)E:F d 7n av E 1z (6)
ST R A

where

b=(o—kv), k=k+jK, and K, = (jf]ov)

K and T denote the Boltzmann constant and the electronic temperature respectively.
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Upon substituting equation (6) into equation (4) then combining with equation
(1) the following set of equations is obtained:

14 ( ) f f“’ m +(fo) 02 dv, do, — 0 .
02]02) UT Uz - ( a’)
and
. 2qe [ e 1'dfy _
l—l—af_ fo mbavvv dv, dv, = 0. (7b)

Equation (7b) is the dispersion relation for the longitudinal mode. Equation (7a)
represents the dispersion relation for the transverse circularly polarized modes.
The upper sign in this equation is taken for the left-hand circularly polarized mode
and the lower sign is for the right-hand circularly polarized mode, which is of interest
to the present investigation. Once the time-independent distribution function f, is
known, the indicated integration in equation (7a) can be carried out. f,, which must
satisfy the time-independent part of the Vlasov equation for the case of a sufficiently
weak static electric field in an electrically neutral electron gas, can be written in a
Maxwellian form as follows:

3/2
fo= Ny (%) exp [—ate + 02, e

where o, = (m/2KT) and N, is the electron number density. Substitution of
equation (8) into equation (7a) yields, for the right-hand cireularly polarized mode,
the following dispersion relation:

kX vkt 1 ]
1———(1—_?)[1+——_——y)2’ )

w? 2w? (1

2 2
=) =) ne B
w w m

SRS NG

where

KT m
. (e?‘N 0)
©s = meg/

It should be pointed out that the deriyation of equation (9) involves an evaluation
of an integral of the form

Go(x) = j—fw o dv (10)
R e I
where y = (1 — Y)a)/k~.
This integral has been discussed in detail by Stix (1962) and his result is used
here. When the term representing the LANDAU or cyclotron damping is neglected
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and by taking only the first two terms of its asymptotic expansion, Gy(y) can be
given as

—j 1
0 = o (1 + 5 -
provided that [4/«,x]* > 1issatisfied. The case where |4/a,x] < 1 has been discussed
by Scarr (1962) in connection with the study of LaANDAU damping and attenuation
of whistlers,
It is of interest to note that when V,; = 0, equation (9) is reduced to the familiar
dispersion equation in the cold-plasma magneto-ionic theory.

3. ProrAGATION CONSTANTS
Equation (9) is a quadratic in k¥ and can be conveniently rearranged as

Pk* + j28k — (@ + W) =0, (12)
where
_ c? [ w22
Tl —IZ; ’
_ KV X
and
X
Q=1-— =7 (13)

For a real wave angular frequency o, the factor P, @, S, and W are real and equation
(12) yields two complex roots which can be given as follows:

k= +p —ja, (14a)
where
8
o° =
and
B :\/((_Q__LPIV) - ocz). (14b)

In view of the fact that the time and spatial dependence is assumed to be in the
form exp [j(wt — k2)], & given by equation (14a) with the upper sign corresponds
to the propagation constant of the forward wave, and that with the lower sign
corresponds to the propagation constant of the backward wave. Moreover a positive
o represents the attenuation, while a negative o represents the amplification of the
wave. Having determined the complex propagation constant %, the variation of
the amplitude and phase of the wave with respect to various system parameters can
be examined in detail. For convenience of discussion the amplitude coefficient
(a/By) and phase coefficient (5/8,), where f, = (w/c), are expressed as

(;;io) = —36Z and (/5’%) = n,0, (15a)
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where
7 1+4gq )
Z e —
T \/<1 — 3
and
2 g - 1/2
o[t (14 -
7(1+9) *3 (15b)
in which
_ X - X . (2KT)
1=7—1y "Tad-1r "7 \me
and
§= (—e—%—). (15¢)
mew

It should be noted that the amplitude coefficient («/f,) is proportional to é, which in
turn is proportional to B,. For a whistler mode of interest, (v7)/2 < 1 so that Z > 0.
Consequently the amplitude constant o can be either positive or negative according
to whether K, < 0 or B, > 0. In view of the fact that the direction of B, is taken
in the positive z-direction, which is also that of the wave propagation, £, < 0 means
that the electrostatic field is directed in the direction opposite to the wave vector,
while &, > 0 signifies that E, is in the direction of the wave vector. For the case
o > 0 (i.e., B, < 0) the whistler mode under consideration suffers an attenuation,
whereas for the case a < 0 (i.e., B, > 0) it experiences an amplification. The
attenuation corresponds to the absorption of whistler mode electromagnetic wave
energy by the plasma electrons, while the amplification corresponds to the situation
of extraction of energy from the plasma.

On the other hand it should be noted that the phase coefficient (f/f,) is nothing
but the refractive index (c/v,), with v, being the phase velocity of the wave, and 7,
representing the refractive index for the case of zero-static electric field, while the
factor C represents the correction factor due to the presence of the static electric
field. Thus the effects of E, upon the propagation of the whistler mode under
consideration are characterized by equation (15a). The numerical illustration of
equation (15a) is shown in Figs. 1 and 2 for a conveniently chosen set of parameters.
The variations of the amplitude coefficient («/f,), and the phase coefficients (f/8,)
with the parameters X and Y for a fixed value of § and 7, are illustrated in Figs.
1(a) and 1(b) respectively. It is observed from Fig. 1(a) that («/g,) increases mono-
tonically with X when Y is fixed, whereas it decreases as ¥ increases when X is fixed.
Moreover the rate of increase of («/B,) with respect to X decreases as Y increases.
Thus, Fig. 1(a) suggests that the spatial rate of change of the wave amplitude
increases with the electron number density N, when the wave angular frequency o
and magnetostatic field B, are fixed, whereas it decreases with an increase in the
strength of the magnetostatic field when N is fixed.

Tigure 1(b) indicates that the phase coefficient (#/f,) increases with X when Y is
fixed, whereas it decreases as Y increases when X is fixed. Thus, Fig. 1(b) suggests
that the phase velocity of the whistler mode under consideration decreases as the
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electron number density N increases when o and B, are fixed, whereas it increases as
B, increases when N is fixed.

On the other hand, the variation of (a/f,) and (p/f,) with the parameters § and
for a fixed value of X and Y is shown in Figs. 2(a) and 2(b) respectively. It is ob-
served from Fig. 2(a) that («/f,) is directly proportional to the parameter é and it
increases with 7 when ¢ is fixed. Thus, Fig. 2(a) suggests that the spatial rate of
change of the wave amplitude increases proportionally with &, when Ny, By, w and =
are fixed. Figure 2(b) indicates that (f/8,) decreases with ¢ when 7 is fixed, whereas
it increases with = when 6 is fixed. Figure 2(b) thus suggests that for a given value of
N,, By, and w, the phase velocity of the whistler mode increases with |F,| when T
is fixed, whereas it decreases as 1" increases when Z, is fixed.

Figures 2(a) and 2(b) together tend to suggest that the presence of an electro-
static field in the system may modify both the amplitude and phase of the whistler
mode under consideration significantly. On the other hand, a change in the electron
temperature 7' appears to have only little effect upon the amplitude, but significant
effect on the phase of the whistler mode.

It is of interest to note that when the parameters X, ¥, and 7 are such that

1LY <X and 1X]Y3]| <1/, . (16)
equations (15) yield

@) = —pY  wd (g =o [(r=2), oo

where o = (w,/w,). Equation (17) can also be written as

e
-

which suggests that, for the low frequency whistler mode propagation, the spatial
rate of change of wave amplitude « is directly proportional to #,, N, and w, and
inversely proportional to (B,%). In other words, for larger &,, there will be more
electrons available for participating in the exchange of energy with the electro-
magnetic wave. On the other hand, the phase velocity v, of the whistler mode is
proportional to 4/{w) and it increases as £, increases regardless of the algebraic sign
of B, whereas it decreases as the electron temperature 7' increases.

and

0)2 (18b)

4., ‘WuIistTLER MODE PROPAGATION IN MAGNETOSPHERE

A class of the electromagnetic wave of natural origin known as ‘whistler’ and
‘v.1.f. emissions’ can propagate through the ionosphere and magnetosphere along the
geomagnetic field line in the whistler mode (HrerLriwzrn, 1965) when the wave
frequency o is in the proper range such that v < w, < o,.

The magnetosphere can be regarded as consisting of a neutral (hydrogen) plasma
imbedded in the geomagnetic field. The background plasma density varies in space
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and time and the field is approximately a dipole subject to small perturbation and
the distortion of the solar wind. Above the ionosphere (e.g., 1000 km) the medium
is slowly varying electromagnetically in the sense that the change in number density
N, is small in the space of a wavelength (Rarorirrs, 1959). Therefore, the propaga-
tion characteristics of the uniform medium which are given in the preceding section
are applicable locally in the magnetosphere under a quiescent condition. If the path
integral of the amplitude constant « is assumed to describe the net growth or decay
of wave amplitude, then the amplification or absorption of power in a wave which
propagates through a slowly varying medium is given by

| A(dB) = —10 log;, [exp { f 20w, ) ds}], (19)

81, path

83

where o is the local amplitude exponent defined by equations (15a) or (18a), and
8, < 8 £ s, specifies the region where E, and B, are parallel and directed along the
dirvection of wave propagation. dsis a differential path length along the geomagnetic
field line. It should be noted that « depends on the quantities w,, w,, 7' and E,
which are in turn dependent on position along the path in general. To evaluate the
integral in equation (19), therefore, a knowledge of the variation of system param-
eters w,, w,, T, and E is required.

If the geomagnetic field is approximated by a pure dipole field, then the whistler
path is defined by the equation for a field line

R cos b
R, cos6,’

where (B/R,) is the radial distance in earth radii, 0 is the geomagnetic latitude, 6, is

the latitude of the path at the earth’s surface and R, is the radius of the earth. The

electron cyclotron frequency along this path has the form

(1 + 3 sin? )12
cost 0

(20)

W, = 0y , (21)
where o, is its equatorial value (= 5:50 X 10° cos® 0, rad./sec).

As for the electron plasma frequency variation along this path the so-called
“gyro-frequency model” has been used by several authors (STorEY, 1953; GALLET,
1959; SmrrH, 1961; DowbEN, 1961) in the study of whistlers, In this model it is
assumed that the electron density tends to be proportional to the strength of the
earth’s magnetic field, i.e.,

w,? = ko, (22)

where « is a constant which, in general, may depend on 0,. Equation (22) represents
a good empirical model for 45° < 6, = 65°.

On the other hand the electron temperature 7' within the magnetosphere is not
uniform in general (CHAPMAN, 1960) so that 7' varies along the whistler path.
However for most whistler analyses 7' has been regarded as constant along the path.

With regard to the strength and variation of the electrostatic field E, along the
geomagnetic field line, it appears that no experimentally observed data has ever been
reported in the literature. In his theoretical estimate REID (1965) showed that if the
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source level at which the electrostatic potential originates were taken at the equatorial
plane, which lies 42560 km above the surface of the earth, measured along the field
line originating at 65° geomagnetic latitude, then a longitudinal electrostatic field
will be about 5 x 10~7 V/m throughout the magnetosphere. However this estimate
does involve a certain amount of guesswork as to the magnitude of source potential.
Thus using equations (15) and (20), and assuming a uniform temperature and electro-
static field along the path in the magnetosphere, the absorption or amplification A4,
given by equation (19), can in principle be evaluated. However, for an illustration,
it is of interest to consider the case in which the wave angular frequency o is much
smaller than the minimum gyrofrequency along the path, w,, i.e., ® < w,,. If the
electron temperature 7' in the magnetosphere is assumed to be in the range between
2000°K and 20,000°K,, then the value of (V,/c) will be in the range between 0-82 X
103 and 2:57 x 103, Since along the whistler path v, < w,, it is not difficult to see
that the inequalities (16) are satisfied, so that equations (18a) and (18b) are applicable
to the analysis of the low-frequency components of a whistler or v.L.f. emission in
the magnetosphere. Consequently, with the aid of equations (21) and (22), equations
(18a) and (18b) become respectively

E
o= — 0975 X 10“6< ij:) (8), nepers/m (23a)
20
2 -1/2
% :\/9 [1 - (4-52 x 107 20 ) zp(ﬁ):l , (23b)
c K Tw,
where
cos!'2 §
= 2
3(0) T+ 3sm20) (23¢)

The plot of y(0) vs. 6 (in Fig. 3a) shows that the function y(0) decreases monotonically
with the geomagnetic latitude 6 from y(0) = 1 to (45°) = 0-01. The value of y(6)
for 6 > 45° is negligibly small compared to (0). Consequently equation (23a)
suggests that the amplitude constant « along the whistler path under consideration
has a larger value in the lower latitude region, near the equatorial zone, than in the
high latitude region.

On the other hand the absorption or amplification along the path, from the
equatorial plane to a height of A km above the earth’s surface, can be given by
equation 19 as

A(dB) = 54(E£”’2")‘F(91) (242)
20
where
k! cos!® §
== - 4
¥(6,) fo (1 F 3 52 07 a0 (24b)
in which 6, is given by
cos B,  cos O, (240)

Ry, (B +h)°
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The plot of ¥'(6,) vs. 6, (in Fig. 3(b)) shows that the function¥'(6;) increases mono-
tonically from 0 at 6, = 0to 55 X 1073 at 0; = 45°, then ¥'(6,) remains constant for
0; > 45°,

Tt should be noted that there is a path which has frequently been considered by
various workers (e.g., SMITH, 1961; BricE, 1964; LiEMOEHN, 1967) in the study of
whistlers. It is the path specified by 8, = 60° or R(6 = 0) = 4R,, which gives
w,, = 86 X 10%rad./sec or f, = 13-7 ke/sec. Along this path the value of «, which
appeared in equation 22, can be taken as x = 27 X 10% rad./sec. Then for the
frequency range f < 1 ke/sec, equations (23a) and (24) can be used. For an illustra-
tion, suppose that the electrostatic field along the path is taken as K, = —5 X
10-7 V/m; then a whistler mode electromagnetic wave with a frequency of one ke/sec
will suffer an attenuation of 2-64 X 10712 nepers/m at most. In this case the absorp-
tion for 6; = 45° will be 8:03 X 107 dB which is negligibly small. However, when
a path with larger values of 6, and B, is considered, both o and 4 can be increased
considerably.

5. ConcrupIinGg REMAREKS

In considering a whistler mode propagation an attempt has been made to take
into account the effect of a weak static electric field which might be present in a
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warm magneto-ionic medium. The equilibrium distribution function of the electron,
fo, is assumed to be Maxwellian. Furthermore, it is also assumed that the static
electric field B in the direction of the magnetostatic field B, is sufficiently weak so
that the drift motion in the direction of wave propagation is small and does not
modify the distribution function f, significantly. The drift velocity of electrons due
to E, is assumed to be negligibly small in comparison to the wave phase velocity.
Thus the medium under consideration is regarded as essentially stationary under a
weak static electric field.

The effect of the presence of electrostatic field on a whistler mode electromagnetic
wave propagation is characterized by equation (15). The method of analysis discussed
in Section 3 is most likely to be adequate for consideration of a whistler mode
propagation in the magnetosphere where the collision effect is usually regarded as
negligible. The application of the theory is illustrated in Section 4 for a low frequency
wave. The effects of electrostatic field £, on the propagation of these low frequency
waves is characterized by equation (23), which suggests that the electrostatic field
effect on the amplitude and phase velocity of the whistler mode will likely be more
significant in the region of low geomagnetic latitude and high altitude rather than in
the high latitude region. In view of the lack of knowledge regarding the strength and
variation of the electrostatic field in the magnetosphere, a reasonably accurate
numerical estimation of the value of « or 4 is not possible at this time. However,
the method illustrated in Section 4 for estimating the value of « or 4 can be used
profitably when more data regarding F, become available in the future. Finally, it
should be pointed out that the method of analysis developed in this paper can be
extended to include such effects as ion-motion, collisions, and the drift motion of a
plasma particle under the influence of a strong electrostatic field. If this is done then
it can also be used for the consideration of electrostatic field effects on a whistler
mode propagation in the ionosphere, particularly in the F-region where collision
effects may be significant and the electrostatic fields are believed to be present.
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Abstract—The effect of a longitudinal electrostatic field on whistler mode propagation has been
studied in a region of the ionosphere where the influence of particle collisions and ion motion
may be significant. As an illustration, the propagation in two cases of interest has been con-
gidered; one deals with the H-region in the neighborhood of 100 km height, and the other with
the F-rogion in the neighborhood of 250 km.

It is shown that the presence of a weak static electric field B, tends to reduce the attenuation
of the forward whistler mode when the magnetostatic field B, and the electrostatic field i, are
in the same direction. Moreover for a sufficiently large value of E, the whistler mode may
experience an amplification. On the other hand, when Ej and B, are in opposite directions an
increase in |Ey| tends to increase the attenuation of the wave. The variation of the attenuation
constant, phase constant, and the phase velocity of the whistler mode with the signal frequency
and with the electrostatic field is also discussed in detail.

1. INTRODUCTION

TreeE wHISTLER mode propagation in a warm collisionless electro-magneto-ionic
medium has been studied recently by Hsrerm (1967) using the coupled Maxwell-
Vlasov equations. The method of analysis given by Hsierm (1967) is suitable for the
analysis of whistler mode propagation in the magnetosphere but it is not adequate
for consideration of the propagation in the lower ionosphere where the particle
collision effects are known to play an important role. However this method of
analysis can be easily extended so that the effect of collisions can be taken into
account. This is done by using the Boltzmann equation with a properly assumed
collision term instead of the Vlasov equation.

The purpose of the present paper is to discuss the effect of a longitudinal electro-
static field on whistler mode propagation in a region of the ionosphere where the
effects of collisons and ion motion may be of significance.

In the present paper the following assumptions are made:

1. All quantities of interest are to be composed of two parts, a time-independent
part and a time-varying part.

2. Small amplitude conditions are satisfied.

3. A one-dimensional analysis is applicable.

4. All time-dependent quantities have harmonic dependence of the form
exp [j(wt — kz)], where w and k are the angular frequency and the propagation
constant respectively; ¢ and z are the time and spatial variables respectively.

* Sponsored by the National Aeronauticsand Space Administrationunder Grant No. NsG 696.
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5. The effective collision frequency of electrons », and that of positive ions », are
independent of the particle velocity.

6. Electrical neutrality is satisfied.

7. The equilibrium distribution function of electrons and ions has the form of a
Maxwellian.

8. The electrostatic field E,, which is directed parallel to the magnetostatic field
B,, is sufficiently weak so that the drift velocities of charged particles are much
smaller than the phase velocity of the whistler mode.

2. DispERSION KEQUATION

Using the procedure of Hster (1967) and by combining the time-varying parts of
the coupled Maxwell-Boltzmann equations the dispersion equation of the right-hand
circularly polarized (whistler) mode for the system under consideration can be
obtained and expressed as follows:

oI (| P L) G P
0 W, 1+ 2w% W2 + W, 1+ 202 W2/’ @
where
Wy =11 —Yy) —jZ], k= (k+jKy),
Wy, =[1-1Y, "‘jzz], kz = (k +jK2)’
)2 W, »,
n=(z) n=() a-()
Q)2 Q, &)
-G w=() 2=()
2KT\/2 el . eBO)
( m ) K= (KT) P = (W ’
e\ 12 2KT\12 —eEo)
(mso) V2= ( M ) S (KT,. ’
and

_ -eBO) _ (82N)1/2
Qz - ( M 2 Qp - M80 ’

in which ¢ = the speed of light in free space,
g, = the dielectric constant of vacuum,
e = the electron charge,
m == the mass of electron,
M = the mass of positive ion,
7', = the electron temperature,
T, = the ion temperature,
K = the Boltzmann constant,
v, = the effective collision frequency of the electron and

»; = the effective collision frequency of the positive ion.
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It should be noted that equation (1) is a quadratic in & and can conveniently be
written as follows:

- [ k\? k
A(—) B( ) ¢ =0, 2a
o o (22)
where
- 1 5_ 1 )]
A= 1-}—7’X( 0 ...23 ,
~ 1 1
B =g (W3_L_T/§)’
=[x (4 5)]
=11 = =
c=| X(W1+W2 , (2b)
in which

W, =W, Wy=W,, X=X, Y=Y,

=) o=(R) =) =)
v ()

The symbol ~ appearing in equation (2) is introduced to emphasize the fact that the
quantity under consideration is a complex quantity. In the present discussion the
wave angular frequency o is regarded as a real quantity and the propagation constant
k is regarded as a complex quantity, which can be written as

k= (p—jo) (3)
where o and B are the amplitude and phase constants respectively. In view of the
fact that the time and spatial dependence is assumed to be of the form

exp [j(wt — kz)] = exp [—az 4 j(ot — fz)],

a positive B represents the forward wave, while a negative § denotes the backward
wave. Itisapparent that positive « represents attenuation and negative o represents
amplification of the wave. The two roots of equation (2a) give the propagation
constants of the forward and backward waves. Once the system parameters are
specified, equation (2a) can be solved for (k18,) = [(B]Bs) — §(«/By)]. Thus the
investigation of the behavior of roots of equation (2a) provides information with
regard to the variation of the amplitude and phase of the whistler mode with the
various system parameters.

3. WHISTLER MoDE PROPAGATION IN THE K- AND F-REGIONS OF THE
JoNOSPHERE

The K- and F-regions of the ionosphere are regarded as consisting of a partially
ionized gas in which electrons, positive ions and neutral particles may interact with
each other. To study the propagation of a whistler mode in such regions a knowledge
of the plasma parameter is required. For example, in order to calculate the net
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growth or decay in amplitude of a whistler wave which propagates through a slowly
varying medium, knowledge of variation of such quantities as n, N, gy, By, T',, T',,
y, and », along the whistler path is required.

A theoretlcal analysis made by NicorrT (1953) shows that the electron collision
frequency in the ionosphere depends on the neutral particle concentration in D- and
E-regions and on the electron concentration in F-region. The collision frequency
also depends on the temperature. For example, above the f'2-layer, »,;, the collision
frequency of electrons with ions, can be approximately given by [NicoreT, 1953]

= [34 + 836 logy, (T3/2/nV/2)]nT-32, (4a)

where # is the electron density and 7' is the temperature of the plasma.

In the case of a plasma consisting of electrons and protons, the effective collision
frequency of protons with electrons should be (see e.g., I'ERrRARO and PrumprON,
1961)

p T (77’2//777/2,)1/2’)’81-, (4’b)

where m,, is the mass of the proton.

Some experimental data with regard to the profiles of number density and tem-
perature of electron and positive ions in the ionosphere can be found in VArLLEYy
(1965).

There is little information available in the literature as to the strength and spatial
variation of the electrostatic field K, in the ionosphere. However, MozEr and
Bruston (1967) recently reported sounding rockets measurements of £y = 20 mV/m
in the auroral ionosphere.

As an illustration of the method of analysis, the propagation characteristics of a
whistler mode with frequency in the range between 1 and 20 kefsec, and with
|By| < 10 mV/m, are examined for two special cases of interest; Case I deals with
the E-region in the neighborhood of height 2 = 100 km, and Case II deals with the
F-region in the neighborhood of # = 250 km. The parameters chosen for thisexample
are given below.

oy, o, P, v; E="
Cases Region rad./sec rad.[sec T°K T, rad.[sec rad./sec M
I k=100 km 23 x 107 107 270°  270° 3-14 X 10° 6:28 X 103 40 x 10~
II h = 250 km 4 x 107 88 X 108  2600° 1300° 3-14 X 10% 1-83 X 10% 0-34 X 10—

The values of parameters w,, w,, T,, and T'; are taken from the data given by
Variry (1965), The value of », for Case I is taken from SERAROFSKY (1961), and the
value of v, for Case II is derived with the aid of equation (4a). Moreover for both
cases it is assumed that (v,/y,) = (m[M)1/2, For Case II the positive ion under
consideration is taken to be an oxygen ion.

Having specified the physical parameters of the region under consideration, for
example, the variation of the amplitude and phase of a whistler mode with the wave
angular frequency for different values of I, can be examined. The plots of « vs. w,
B vs. wand (v,,/c) vs. w, with v, denoting the phase velocity of the whistler mode are
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~
T

—— Eo==8 mWmeter

!
16 20x%10%

-2
a
w, rad/sec
Fig. la. o vs. o with E; as parameter for Case I.

shown in Figs. la, 1b, and 1c respectively for Case I, and the corresponding plots are

shown in Figs. 2a, 2b, and 2c respectively for Case II.
4. DISCUSSION OF RESULTS

It is well known that particle collisions lead to the attenuation of the whistler
mode in the ionosphere. It is noted from Figs. la and 2a that when E, = 0 the
attenuation constant « is essentially invariant with respect to the signal frequency.
However, with the presence of an electrostatic field « does vary with the signal
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Fig. 1b. B vs. o with F, as parameter for Case 1.

frequency. For E, > 0, the presence of E, leads to a reduction of the attenuation
and if B, is sufficiently large then « may become negative; thusthe wave is amplified.
It should be noted that when E, > 0, for the parameters chosen, « is negative except
in the range w > 15 X 10%rad/sec with I, = 4 mV/m in Case I. This suggests that
when E; and B, are both in the direction of the wave vector, the whistler mode
experiences an amplification. Moreover when F,; < 0, o is positive so that the wave
experiences an attenuation when E, and B, are oppositely directed. |«| increases
with |E,| in the range w = 4 X 10%rad/sec for Case I and in the range w = 3 x 104
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7x1072

5l — Eo=8 mV/meter

Vph/c

o] 4 6 8 1oxi0*
w, rad/sec

Fig. le. (v,,[c) vs. @ with E, as parameter for Case 1.

rad/sec for Case II. The maximum of |«| for both Cases I and II appears to lie
somewhere in the low frequency range of the spectrum; o = 5 X 10%rad/sec for
|E,] < 8 mV/m., The comparison of Fig. 1a with Fig. 2a shows that the extent of the
effect of K, on ¢ is greater in Case IT than in Case I. However it should be noted that
in Case I it is assumed that 7', = T',, whereas in Case IT T, = 27',.

On the other hand, from Figs. 1b and 2b, it is observed that when F, = 0 the
phase constant § increases monotonically with the signal frequency. When E, > 0,
the group velocity v, = dw/df is positive and varies with the signal frequency.
However, when E, < 0, dw/df < 0in the low frequency range and dw/df8 > 0in the

11
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Fig. 2a. o vs. w with K, as parameter for Case 1L

high frequency range. Furthermore it is observed that in Case I, when K, > 0, the
wavelength of the whistler mode increases with || and when ¥, < 0, it decreases
as |B,| increases. For Case II the wavelength increases with |E| regardless of the
algebraic signs of B, Finally it is observed that in Case I (see Fig. lc) the phase
velocity v,; of the whistler mode increases with B, when E, > 0 and decreases with
|E,| when E, < 0. On the other hand, in Case II (see Fig. 2¢), v, increases with |Ey|
regardless of the algebraic sign of K.
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E5=0 mV/mefer

| |
0 2 4 6 8 10x10*
w, rad/sec

Fig. 2b. f vs. w with E, as parameter for Case II.

It is also of interest to note that Figs. 1 and 2 both suggest that the extent of
influence of B, on the change in the amplitude, wavelength and phase velocity of the
whistler mode under consideration in both Cases I and II is much greater in the low
frequency range of the spectrum, e.g., o < 6 X 104rad/sec, than in the high fre-
quency range, e.2., ® > 6 X 10%rad/sec.

5. CONCLUDING REMARKS

In the present paper it is assumed that the collision frequencies of the electron and
positive ions are independent of the particle velocity. The classical Appleton—
Hartree equation used for propagation in the ionosphere has this inherent assumption.
Because the electron elastic collision frequency with nitrogen molecules in the
atmosphere varies as the square of the electron speed (PrELPS and PACK, 1959) a
large discrepancy between classical theory and ionospheric experiments can be
expected.

However, SEKAROFSKY (1961) has derived a generalized Appleton-Hartree
equation applicable to any variation of electron collision frequency with electron
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speed and any degree of ionization. His analysis suggests that the classical Appleton—
Hartree equation should be applicable with no corrrection necessary for the region of
the ionosphere and the range of parameters under consideration in the present paper.
Thus the velocity-independent collision frequency model considered hereisreasonable.

Most of the uncertainty in the calculation arises from a lack of knowledge of the
electrostatic field strength and the collision frequency of positive ions in the region
investigated. Consequently the numerical illustration shown in Figs. 1 and 2 only
provide information with regard to the order of magnitude and a general behavior of
the propagation constant. Although only the forward whistler mode has been con-
sidered in these figures, it is not difficult to analyze the propagation characteristic of
the backward whistler mode, which is also characterized by equation (2a).

The frequency range used for the illustration lies within the range over which a
class of naturally occurring radio noise in the ionosphere and magnetosphere such as a
whistler and VLF emission is observed (HELLIwELL, 1965). The result presented in
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this paper should be useful for the study of the propagation of a whistler or VLF
emission in the vegion of ionosphere where the presence of electrostatic field may be of

An Introduction to Magneto-Fluid Mecha-
nics. Clarendon Press, Oxford, England.

Whisilers and Related Ionospheric Phe-
nomena. Stanford University Press,
Stanford, Calif.

J. Atmosph. Terr. Phys. (in press).

J. Geophys. Res. 72, 1109.

J. Atmosph. Terr. Phys., 8, 200.

Proc. I.R.E. 49, 1857.

significance.
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I. INTRODUCTION

A theory of growing electromagnetic waves was
advanced some years ago by Bailey' ™ in his electro-
magnetoionic theory, which is an extension of the
well-known magnetoionic_theory of Appleton and
others. The basis of Bailey’s theory consists of the
following physical laws:

(1) Maxwell’s law governing the behavior of
electromagnetic fields.

(2) The conservation of electron and positive
ions.

(3) Maxwell’s law for the transfer of momentum
in a mixture of different kinds of particles.

The analysis of the dispersion relation for the
system, derived from the above macroscopic laws
under the small-amplitude condition, led Bailey*
to predict the amplification of a plane wave, within
a certain frequency band, in an ionized medium
pervaded by static electric and magnetic fields which
are both parallel to the direction of wave propaga-
tion. Bailey then applied his theory to explain the
excess noise radiation observed in sunspot.* How-
ever, Bailey’s® theory of amplified circularly polar-
ized waves in an ionized medium was first criticized
by Twiss® who argued that the growing wave, which
Bailey interprets as an amplified wave, can only
be excited by reflection at the boundary. A critical
analysis of Bailey’s theory was also given later by
Piddington,® who shows that the electromagneto-

1V, A. Bailey, Australian J. Sci. Res. Al, 351 (1948).

2 V. A. Bailey, Phys. Rev. 75, 1104 (1949).

3 V. A. Bailey, Phys. Rev. 78, 428 (1950).

4 E. V. Appleton and J. S. Hey, Phil. Mag. 37, 73 (1946).
5 R. Q. Twiss, Phys. Rev. 84, 448 (1951).

6

J. H. Piddington, Phys. Rev. 101, 9 (1956).

ionic theory predicts spurious growing waves which
do not correspond to any interchange of energy
between the gas and the field, but are attributed
to the movement of the observer and emitter relative
to the gas particles. Even with the additional ion
motion the mass drift of the electrons and ions to-
gether introduce no new wave form in the electro-
magnetoionic theory although drift does modify
the existing waves. While these authors are con-
cerned primarily with the amplification aspects, no
attention has been given to the other aspects of the
propagation characteristics.

On the other hand, studies of electromagnetic
wave propagation based on a macroscopic small-
signal theory have been made by several authors
for a drifting cold magnetoplasma’ '’ and a sta-
tionary two-component warm plasma."’

Recently, in the course of examining the dispersion
relations for a finite temperature electromagneto-
plasma some interesting effects on the propagation
of circularly polarized electromagnetic waves due
to static electric fields have been observed."” For
example, the presence of an applied transverse
static electric field causes the cutoff frequency to
shift'® and in addition results in the coupling of the
longitudinal mode to a transverse circularly polar-

" H. Unz, IRE Trans. Antennas and Propagation AP-10,
459 (1962).

8 M. Epstein, IEEE Trans. Antennas and Propagation
AP-11, 193 (1963).

9 C. T. Tai, Radio Sci. 69D, 401 (1965).

10 H. Unz, IEEE Trans. Antennas and Propagation AP-13,
595 (1965).

11 S R. Seshadri, Radio Sci. 69D, 579 (1965).

12 H. C. Hsieh, The University of Michigan, Technical
Report No. 95 (1966).

13 H. C. Hsieh, J. Atmos. Terres. Phys. 29, 1219 (1967).
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zed mode; these are discussed elsewhere. On the
other hand, when the applied static electric field
is directed parallel to the static magnetic field, the
presence of a static electric field may significantly
affect the amplitude and phase of the electromag-
netic wave.

The purpose of this paper, therefore, is to discuss
in detail the effect of an applied longitudinal static
electric field upon the propagation characteristics
of a transverse circularly polarized wave which
travels along the static magnetic field in a finite
temperature unbounded two-component plasma. In
the present discussion the coupled Boltzmann—
Maxwell equation is used.

II. BASIC EQUATION

The electron distribution function f(r, v, ¢) and
the ion distribution function ¥ (r, v, t) for this plasma
are governed by the Boltzmann equation

of

o + v-Vf — — (E 4+ vxB)-V.f = v.(fp — f) (1a)

e
m
and

‘39_1? + v-VF + 7‘% (E+ vxB)-V,F = y,(F, — F),
(1b)

where m and M denote the electron and ion masses,
respectively, and e is the electronic charge which is
taken as a positive quantity. », and »; are the fre-
quencies of collision of electrons with positive ions
and of lons with electrons, respectively. These
collision frequencies are assumed to be independent
of the particle velocity. f, and F, are the equilibrium
distribution functions of the electron and ion,
respectively.

The electromagnetic fields in the plasma are
governed by the Maxwell equations

0B oD

V:D =p, and V-:B = 0.

The electric displacement vector D and the magnetic
flux density B are, respectively, related to the
electric field intensity E and the magnetic field
intensity H in the following manner:

D =¢E and B = uH, 3)

V xE =
2

where ¢, and p, denote the dielectric constant and
the permeability of vacua.

The convection current density J and the charge
density p may be written in terms of the distribution
function as

H. C. HSIEH

J=efv(F—f)d3vandp=ef(F—f)dav.(4)

Consider all quantities of interest to be composed
of two parts, a time-independent part and a time-
varying part, which are denoted by the subscripts
0 and 1, respectively,

B = By(r) + Bi(r, 1), E = E\@) + E\(r, 1);
J = Jo(r) + Jl(r’ t)y P Po(r> + Pl(r’ t)y (5)
f=f@,v)+filw,v,8), F=Fr,v)+ F,v,1).

In the present paper the following assumptions
are made:

(1) Small-amplitude conditions are satisfied so
that the terms involving the product of time-
dependent quantities are negligible.

(2) A one-dimensional analysis is applicable, i.e.,
all quantities vary only with one spatial variable,
and 4/0xz = d/dy = 0 in a rectangular Cartesian
coordinates system.

(3) All time-varying quantities have harmonic
dependence of the form exp [j(wt — kz)], where w
and k are the angular frequency and the propagation
constant, respectively.

Based on the above assumptions, the substitution
of Eq. (5) into Eqgs. (1)-(4) results in two sets of
differential equations, one of which governs the
time-independent quantities and the other governs
the time-varying quantities. The former is given by

of

0. 5 = o Bo + VXB)-Vify = 0, (6a)
i, %—? + 7 (B + vXB)V.F, = 0, (6b)
Bos = oo, B = o, B —0, ()
Jo=c [ v(Fy — 1o ¥, (6

and
p=c [ (F0— f) ¥, (66)

where d*» = dv, dv, dv, denotes the volume element
in velocity space. On the other hand, in discussing
the set of equations relating the time-varying quanti-
ties it is convenient to consider the following trans-
formation of variables:

(7a)

v, = v, ¢08¢ and v, = v, sin ¢,



1498

zed mode; these are discussed elsewhere. On the
other hand, when the applied static electric field
is directed parallel to the static magnetic field, the
presence of a static electric field may significantly
affect the amplitude and phase of the electromag-
netic wave.

The purpose of this paper, therefore, is to discuss
in detail the effect of an applied longitudinal static
electric field upon the propagation characteristics
of a transverse circularly polarized wave which
travels along the static magnetic field in a finite
temperature unbounded two-component plasma. In
the present discussion the coupled Boltzmann-
Maxwell equation is used.

II. BASIC EQUATION

The electron distribution function f(r, v, ¢) and
the ion distribution function F(r, v, ¢) for this plasma
are governed by the Boltzmann equation

T (B kB = il = 9).(18)
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at m
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ar e
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In the present paper the following assumptions
are made:

(1) Small-amplitude conditions are satisfied so
that the terms involving the product of time-
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(2) A one-dimensional analysis is applicable, i.e.,
all quantities vary only with one spatial variable,
and 9/dz = 9/dy = 0 in a rectangular Cartesian
coordinates system.

(3) All time-varying quantities have harmonic
dependence of the form exp [j(wt — kz)], where w
and k are the angular frequency and the propagation
constant, respectively.

Based on the above assumptions, the substitution
of Eq. (5) into Eqgs. (1)—(4) results in two sets of
differential equations, one of which governs the
time-independent quantities and the other governs
the time-varying quantities. The former is given by

9o

oo~ o+ VXB):V.fy =0,  (6a)
,. %? + 4 (B + vXB)-V.F, = 0, (6b)
Bo oty B =g, B mo, 60)
Jo—e f v(F, — fo) d*, (6e)

and
p=c [ (B0~ f) v, (66)

where d*» = dv, dv, dv, denotes the volume element
in velocity space. On the other hand, in discussing
the set of equations relating the time-varying quanti-
ties it is convenient to consider the following trans-
formation of variables:

v, = v, c08¢ and v, = v, sin o, (7a)
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and
E, = L{(B,, + jE,,) and B, = }(B.. =& jBy,). (7b)

Then, by introducing the following parameters:

@), @) an ()
m'_<m . # m)’ S e M )’

I —6E0>

] ( M/

the time-varying parts of Eqs. (2)—(4) can be com-
bined to give

2 455
2(“’—2 il kz)E*
C

Il

3 @ 27
= jwpce [ f [ e (F, — )0} de dv, dv. (8a)
Joo Jo Jo

and

. @ @ 2
B =k f f f (F, — f)o.. de dv, dv,.
sl s

wWeqg

(8b)
Moreover, the time-varying parts of Eq. (1a), with
the aid of Eqs. (7), can be written as follows:

[](CO . kl)z) + vV, + W, %:Ifl — @, gl{i

a_jl _]_ Qf_l) Y. ,a_fl & :I ie
== [“"(au, + RE + w- T + jw_ D(f) le

Oha a_jl)
o [a+(6v, v, 0. i

L, D(fo]e"'*’

*, do
= &M (DB + L M (OB + 2B, O
T R e i el m~ v,
ep
I ’ITLB“ a‘p; (93‘)

where the differential operator D is defined by

d d
Rl )= (v, v, - é)v,>

and

W, = %(‘—"u == jwcv)y Qs = %((L, == jau))

M (fo) = [(1 (0 51 %,) s ’%%] (9h)

On the other hand, the time-varying part of Eq.
(1b) which governs the F, function, is easily ob-
tained by replacing a., @,, w., w,, v., 1, and f, with
A, A, 2, 2, v, F,, and F,, respectively, in Eqs.
9).

It should be noted that E_ and E. in Eq. (9a)
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are the left- and right-hand circularly polarized
components of electric field, respectively.

III. DISPERSION RELATIONS

Suppose that the positive z direction is taken in
the direction of the magnetostatic field B,, i.e.,
By, = By, = 0sothat v, = 0. Since VB = 0, B,,
must be independent of z, and it is taken to be zero
in the present discussion (which is reasonable for a
longitudinal propagation). Moreover, consider that
the time-varying electron distribution function f,
is composed of three parts and may be written as

fl = f_(Z, t} 1),, 02)6“0 + f+(Z, t’y Uy, vz)e—ip
+ g(z: t; Uy, vz)‘

Since Eq. (92) must be valid for an arbitrary value
of ¢, the substitution of Eq. (10) into Eq. (92) yields
the following system of equations:

(10)

o — v — kv, + w,)f-

af— i @_ —_— _g_ /
— a, o, a. e M_(f)E_, (11a)
j(w i jVe o k’vz = wZ)f+
_ afs dg Rea
a. 61), @y 61),. T m ]‘[+(7‘0)E+) (llb)
and
j(w = jyeb i kv:)g
o 8g 20,0 20 .. 0 €8
9, v, f+ v, =5 m oy,  ** (11e)

which clearly suggests the possibility of coupling
between the transverse mode and the longitudinal
mode when a, and a_ are nonzero, which is the
case when the transverse electrostatic field is present.
This case has been examined and discussed else-
where. "

In the present investigation it is assumed that
a. = 0, ie., BE,, = H,, = 0, since the effect of the
longitudinal electrostatic field is of primary concern.
Suppose that f_, f., and ¢ have the », dependence of
the form exp (—ay?), in which o, = m/(2KT,);
then f_, f,, and ¢ can be explicitly expressed in terms
of £_, E,, and K,,, respectively, from Eqs. (11) as

_ (e/m)M+(f)E~ _ (e/m)(3fo/30.)E,.
(6, les,) A ib, ’
(12)

and

fa

where

61 = (‘I’l Yy ]Elvz); @ = (w — jVe)J ]El = (k ot .]I(l);



1500

and

K = ()

K and 7,.denote the Boltzmann constant and the
electron temperature, respectively. Thus combining
Eqgs. (10) and (12) the distribution function f,
is expressed in terms of £, and F,,. Similarly the
time-varying ion distribution function I"1 can be
written as

By = Fi(2; t0r,0.)e'* + Faoz, t, 0,067

+ G(z’ t} v"’ UZ)Y (13)
where
A —(e/M)M -(Fy)E+
S R b 0D
and
G ==/ I@F/30,)E,, o
]62
in which
52 = (@ — 2” ), @ = (0 — jvy) = (k + jK,),
and

—el,
Ko (KT)
M and T'; denote the mass and temperature of the
ion, respectively,
Upon substituting F, and f;, given by Egs. (13)
and (10), respectively, into Eqs. (8) the following
set of equations is obtained:

_ m(we/e)
g ( 2 _ 212\ zkz)
(e/m)M =(fo) (e/M)M;(FO)J \ ~
f-mfo [ (by £ w.) + (AE T dv, dv.=0
(15a)
and
142 @
e 1 afo e 1 9F, s
f f (mB a0, T M T, 0, )vrv; dv, dv,=0. (15b)

Equation (15a) represents the dispersion relation
for the transverse circularly polarized modes; the
upper sign is to be taken for the left-hand circularly
polarized mode and the lower sign is for the right-
hand circularly polarized mode. Equation (15b)
is the dispersion relation for the longitudinal mode.
In the following discussion, Eq. (152) is examined
in detail.

H. C. HSIEH

It should be noted that when £,=0, K,=K,=0,
and when », = »; = 0, @, = @ = w, so that b, =
b, = (v — kv,), then Eq. (15a) is reduced to those
given by Montgomery and Tidman."*

For a one-dimensional analysis in a Maxwellian
plasma, f, and ', can be written as

and

F,=N <%) exp [—az(vf T e;%] , (16b)

in which the electric scalar potential ®(z) is related
to static electric field by F,, = —d®/dz. n and N are
the electron and positive ion concentrations, re-
spectively. It is easily verified that f, and F, given
by Eqgs. (16) satisfy Eqgs. (6a) and (b), respectively.
Furthermore, they yield that J,, = Jo, = Jo, = 0
which implies that the static magnetic field is inde-
pendent of z. The space-charge density p, is given by

po(2) = eN exp (KT(I)) — en exp (Igi,) )

Suppose that & is sufficiently small so that

(16a)

<1 and < 1 (18)

6
K
and the condition of electrical neutrality is also
satisfied, i.e., n = N. Then p, vanishes and from
Eq. (6¢), E,. will be independent of z.

In the present discussion F,, is assumed to be

constant and denoted by E,.

Having assumed the form of the functions f, and
F,, the indicated integration in Eq. (15a) can be
carried out to give

KT

X, ( Viky 1 )
o= =\ et S ety
X, VIR 1 )
W, (1 toz2 e 19
where
/= xY)—3iZ], W,=[A=xY,)—jZ)],

= (k + JK)),

1
x= (&)
o

k. = (k + jKs),

}’1 = (‘2) ]

(O]
Ve - eEo> i
<w) ! Koz <KT, 4

4D, C. Montgomery and D. A. Tidman, Plasma Kinetic
Theory (McGraw-Hill Book Company, Inc., New York,
1964 ), Chap. 10.

7z, =
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a
I

S, - ()
o (KT,- Z PN, 0

N )*
0, = (&1,

It should be pointed out that the derivation of
Eq. (19) involves an evaluation of an integral of
the form

G =% [ ZRE g,
where x may take on the value of (w/k,,,)(1 — jZ;,»)
or (w/k, 2)W,. .. This integral has been discussed in
detail by Stix'® and his results are used here. When
the term representing the Landau or cyclotron
damping is neglected and taking only the first two
terms of its asymptotic expansion, G,(x) can be

given by
‘ (52,

provided that |ax|* >> 1 is satisfied. It is of interest
to note that when V; = V, = 0, Eq. (19) is reduced
to the familiar dispersion equation in the cold-
plasma magnetoionic theory. On the other hand,
when B, = 0, K, = K, = 0,s0o that &, = k, = k,
and when v, = v, = 0,®, = @, = w so that Eq. (19)
is reduced to those given by Heald and Wharton.'®

IV. PROPAGATION CONSTANT

(204)

Go(x) = (20b)

Equation (19) is a quadratic in £ and can con-
veniently be written as

E(%) + B<60> =0 =0, (21a)
where

~ Xo

= <1 + 7z W +”V3>,

A aQX)

o . <l &)

G5 (1 W, W/’
in which

(L), o (o)
T S\ LT ' \mew/

3 —eEo> . <e>
b (MCw i c

18 T, H. Stix, The Theory of Plasma Waves (McGraw-Hill
Book Company, Inc., New York, 1962), Chap. 8.

16 M, A, Heald and C. B. Wharton, Plasma Diagnostics
(uﬁlh Microwaves (John Wiley & Sons, Inc., New York, 1965),

1ap. 3.
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The symbol ~ appearing in Eqgs. (21) is introduced
to emphasize the fact that the quantity under
consideration is a complex quantity. In the present
discussion the wave angular frequency w is regarded
as real and the propagation constant % is regarded
as a complex quantity which can be written as
where « and (8 are the amplitude and phase constants,
respectively. Since the time and spatial dependence
is assumed to be in the form exp [j(wt — k2)] =
exp [—az + j(wt — B2)], the forward and backward
waves are represented by positive and negative
values of B, respectively. On the other hand, the
attenuation and amplification of the wave are
represented by a positive and negative value of o,
respectively. Once the system parameters are
specified, Eq. (21a) can be solved for (%/8,)
(8/Bo — ja/Bo) and the propagation characteristics
can be examined.

It should be noted that for an electrically neutral
plasma the electronic and ionic parameters are
related by X, = ¢X,, YV, = —¢Y,, 7o = (¢/0)n,
and §, = —é,/¢, where¢§ = (m/M) and 6 = (T,/T;).
Furthermore, the collision frequencies », and »; are,
in general, dependent on the density and tempera-
ture. For a fully ionized gas », is determined by the
electron—ion encounter, while for a partially ionized
gas v, is determined by electron—neutral encounter
and electron—ion encounter.'” For the purpose of
illustration, a fully ionized gas, consisting of electrons
and protons, is considered here. For a Maxwellian
isothermal plasma (i.e., 7, = 7T.)v.; can be given
by18

ver = 3.63 X 10‘6(7’,2) In A, (23)

where
3
=524 5610 (T )

in which 7 is the electron concentration in mks units.
On the other hand, the effective collision frequency
for proton—electron encounters can be given by'*

_ (m) N
& SV T

17 B. S. Taneubaum and D. Mintzer, Phys. Fluids 5, 1226
(1962).
( 18 M. P. Bachynski and B. W. Gibbs, Phys. Fluids 9, 520
1966).
19V, C. Ferraro and C. Plumpton, An Introduction lo
Magneto-Fluid Mechanics (Clarendon Press, Oxford, England,
1961), Chap. 8.

(24)
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Fia. 1. (a) Variation of the amplitude coefficient (a/8,) and
the phase coefficient (8/8,) with electron density (X) for
right-hand circularly polarized wave in an isothermal electron—
proton plasma, with ¥=1.10, 7=2 X 107, and =27 X 10¢
rad/sec. (b) Variation of the amplitude coefficient (a/80) and
the phase coefficient (8/8,) with electron density (X) for
left-hand circularly polarized wave in an isothermal electron—
proton plasma, with ¥ = 1.10, 7 = 2 X 107%, and v = 2=
X 10° rad/sec. (c) Variation of the normalized amplitude con-
stant (a/a¢) with the normalized electron density (X) for
right-hand cireularly polarized wave in an isothermal electron-
proton plasma with ¥ = 1.10, 7 = 2 X 107¢, and & = 27 X 10°
rad/sec. (d) Variation of the normalized amplitude constant
(ee/ag) with the normalized electron density (X) for left-hand
circularly polarized wave in an isothermal electron—proton
plasmawith ¥ = 1.10, 7 = 2 X 1075, and w = 2= X 10° rad /sec.
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where m, is the proton mass, therefore, Z, = £'Z,.
The variations of (a/B,) and (8/8,) are illustrated
numerically in Figs. 1-3 for an isothermal electron—
proton plasma (ie., £ = 1/1836 and 6 = 1) with
the aid of Eqgs. (23) and (24).

In these illustrations the frequency of the wave

2.0x107°

i

Y=110,3=0

10—
<
o
05—
0
\_(_,/(Y *1.30, 8210"°
Y=110, 8+107*
oh | L I 1 L
“o 02 0.4 06 08 10 12
X
(a)
4
3 Y=110,3=10"*
<«
Q
Y=130,8=10""
2 —
| Jie | | | |
0 0.2 04 06 0.8 10 12
X
(b)

Fia. 2. (a) Variation of the amplitude coefficient (a/B)
with electron density (X) for right-hand circularly polarized
wave with ¥ >1, r=2 X 1075 and w=27 X 10° rad/sec. (b)
Variation of the phase coefficient (8/8,) with electron density
(X) for right-hand ecircularly polarized wave with ¥ > 1,
r=2 X 1075 and w = 27 X 10° rad/sec.
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under consideration is taken as 1 GHz. The plots
of amplitude coefficient (a/B,) and phase coefficient
(8/B,) versus the electron density (X) for different
values of the parameter § = (ef,/mcw), in the case
Y = 1.10, are shown in Figs. 1. Figure 1(a) deals
with the right-hand circularly polarized wave,
while Fig. 1(b) is for the left-hand circularly polarized
wave. From both Figs. 1(a) and 1(b), it is observed,
that for a given set of system parameters a change
in 6 has a profound effect on the amplitude, but it
has practically no effect on the phase of the cir-
cularly polarized wave. Furthermore, when § < 0
(i.e., when the longitudinal electrostatic field E, is
directed opposite to the wave vector, k) an increase
in |8] leads to an increase in the attenuation of the
wave. On the other hand, when 6 > 0 (i.e., when
E, and k are in the same direction) an increase in
|8] leads to the reduction of the wave attenuation.
In this case if § is sufficiently large, o may become
negative so that the wave may experience an ampli-
fication rather than an attenuation. However, it is
difficult to give a comprehensive physical interpreta-
tion for gain in wave amplitude when & > 0, without
a detailed analysis of the dynamic behavior of the
charged particles or the studies of the energy con-
version process between the particles and the electro-
magnetic wave. This is not done in the present
paper; however, the question of energy conversion
process will be considered in a future paper. The
result of the present simple-minded theory appears
to suggest that the effect of electrostatic field on
the amplitude of the electromagnetic wave is evi-
dent. While the collision process in the plasma tends
to randomize the order motion, the introduction of
electrostatic field in the wave direction tends to
reorganize the motion of the particle in such a way as
to make the exchange of energy between the particles
and the wave easier. In other words, it makes the
extraction of particle energy in the plasma easier.
Comparison of Figs. 1(a) and (b) shows that the
amplitude coefficient for the right-hand circularly
polarized wave is three orders of magnitude greater
than that of the left-hand circularly polarized wave.

In the interest of emphasizing the change in the
amplitude constant caused by the electrostatic field,
the plots of a/a, vs X for the right-hand circularly
polarized and the left-hand circularly polarized
waves are shown in Fig. 1(¢) and Fig. 1(d), respect-
ively, where «, denotes the amplitude constant for
the case of zero static electric field and also repre-
sents the rate of collision damping. In these figures,
it is observed that for a given X, |a/ay| increases
as [6], which suggests that the effect of £, on the
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F1a. 3. (a) Variation of the amplitude coefficient (a/8,) with electron density (X) for right-hand circularly polarized wave
with ¥ < 1,7 = 2 X 1075 and o = 27 X 10° rad/sec. (b) Variation of the phase coefficient (8/8,) with electron density
(X) for right-hand circularly polarized wave with ¥ < 1,7 = 2 X 107¢ and v = 27 X 10° rad/sec.

amplitude constant « increases as |E,|. On the other
hand, the change in the amplitude constant « is
more drastic in the range of small X than in the
range of large X; i.e., the effect of F, on the change
in amplitude of the electromagnetic wave is greater
in the region of low electron number density than in
the region of high number density.

The effects of change in the strength of magneto-
static field B, upon the plots of («/B,) and (8/8.)
vs X, for the right-hand circularly polarized wave,
are illustrated in Figs. 2 for the case ¥ > 1 and in
Figs. 3 for the case ¥ < 1. It is observed that in
the case ¥ > 1 [see Figs. 2(a) and (b)], for a given
value of X, and § = 0 an increase in ¥ = (eB,/mw)
causes both « and 8 to decrease, which suggests that
an increase in |Bo| reduces the attenuation and in-
creases the phase velocity of the wave. On the other
hand, in the case ¥ < 1 [see Figs. 3(a) and (b)] for
X > 0.4 an increase in Y causes both « and 8 to
increase so that an increase in |B,| leads to an in-
crease of attenuation and reduction of phase velocity
of the wave.

It is also of interest to note, by comparing Figs.

2(a) and 3(a), that when § > 0 an increase in é
decreases a for the case ¥ > 1, whereas it increases
a for the case Y < 1. On the other hand, compari-
son of Figs. 2(b) and 3(b) suggests that the presence
of E, does modify the phase of the wave somewhat
for the case Y < 1, but it has no effect on the phase
for the case ¥ > 1.

V. CONCLUDING REMARKS

In the present discussion the electrostatic electric
field F, is assumed to be sufficiently weak and the
drift velocity of the plasma is much smaller than the
phase velocity of the wave under consideration.
Thus, it is assumed that the medium through which
the electromagnetic wave propagates is essentially
stationary rather than drifting.

It is shown that the effect of a weak static electric
field, directed along the direction of wave propaga-
tion, on the amplitude and phase of the right-hand
circularly polarized wave is most significant when
the wave frequency is in the vicinity of the electron
cyclotron frequency, e.g., for cases ¥ = 1.1 or 0.9.

A constant collision frequency model has been
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used in the present discussion. For the system param-
eters chosen for illustration this assumption is
reasonable. The effect of a velocity-dependent
collision frequency on the Appleton-Hartree equa~
tion of magnetoionic theory has been discussed by
Shkarofsky.*

It should be pointed out that in the present dis-
cussion a Maxwellian plasma has been considered,
i.e., the time-independent distribution functions of
electron and positive ions are assumed to be a
Maxwellian. Furthermore, it is also assumed that the
time-varying distribution function of electron and
positive ions has a Maxwellian distribution in the
direction of wave propagation. It should be noted
that the latter assumption may not in general be

20 T, P, Shkarofsky, Proc. IRE 49, 1857 (1961).
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valid. The reasonableness of this assumption might
be tested by an experimental investigation which is
to be considered in the future. However, if this as-
sumption is not too unreasonable, then the result
of the present theory suggests that the introduction
of an electrostatic field in the direction of wave
propagation may reduce the attenuation of the
wave. It is of interest to note that with a proper
strength of Z, it may also lead to an amplification
of the circularly polarized electromagnetic wave in a
warm collisional two-component magnetoplasma.
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The trajectory differential equation governing the motion of relativistic electrons is derived in terms of
the scalar and vector potentials of the system using the principle of least action. The conservation of energy
and momentum are used to develop the paraxial-ray differential equation describing the beam radius of a
laminar-flow relativistic electron beam. The focusing of the electron beam in drift and accelerating regions
has been examined and the conditions for perfect balancing and nonspreading of a laminar-flow drifting beam
are also derived. Tt is shown that the equilibrium condition for Brillouin flow is that 2w;2—w,2[1— (u./¢)*]=0,
where wr, is the Larmor precession frequency and w, the electron—plasma frequency. #. and ¢ denote, re-
spectively, the axial beam velocity and the speed of light in vacuum. The variation of the normalized
ripple amplitude and the scallop wavelength of a drifting beam is discussed. The profile of a beam accelerated
in a uniform longitudinal electrostatic field is also illustrated.

I. INTRODUCTION

The subject of electron-beam focusing has been
investigated extensively by various workers™!! in-

*This work was supported by the National Aeronautics and
Space Administration.

L]. R. Pierce, Theory and Design of Electron Beams (D. Van
Nostrand, Inc., New York, 1949).

2 P, E. Strel’nikov ef al., Sov. Phys.—Tech .Phys. 6, 285 (1961).

¢ K. K. N. Chang, Proc. IRE 43, 62 (1955).

¢ P. K. Tien, J. Appl. Phys. 25, 1281 (1954).

® A. M. Clogston and H. Hefiner, J. Appl. Phys. 25, 436 (1954).

8 E. R Harrison, J. Electron. Control 4, 193 (1958).

71. N. Meshkov and B. V. Chirikoy, Sov. Phys.—Tech. Phys.
10, 1688 (1966).

8 J. D. Lawson, J. Electron. Control 5, 146 (1958).

W, H. Bennett, Phys. Rev. 98, 1584 (1955).

10\, H. Bennett, Phys. Rev. 45, 890 (1935).

1S. E. Graybill and S. V. Nablo, Appl. Phys. Letters 8, 18
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terested in their use, e.g., in microwave tubes and linear
electron accelerators. In the dynamic analysis of elec-
tron beams encountered in most microwave beam-type
devices'® relativistic effects are usually negligible,
whereas, in the focusing of charged particles in a
linear electron accelerator, relativistic effects (self-
focusing and pinching) play a primary role. Recently the
focusing of a high-intensity electron beam in an ac-
celerating tube has been discussed theoretically by
Meshkov and Chirikov,” and previously the magnetic
self-focusing of partially neutralized relativistic elec-
tron beams drifting in the absence of any longitudinal
field has been analyzed theoretically for a variety of
idealized stream conditions* ! and observed experi-
mentally.!t

It appears that little attention has been given to the
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study of the dynamics of a relativistic electron flow
under the influence of its own fields in the presence of
externally applied static electric and magnetic fields.
The purpose of the present study is to investigate the
focusing of a relativistic cylindrical electron beam in the
presence of applied static axial electric and magnetic
fields, assuming that the effects of radiation and
collisions are negligible, and further that the transverse
velocity is small in comparison with the axial velocity.
The principle of “least action” is used in deriving the
trajectory differential equation of the charged particle.

II. TRAJECTORY DIFFERENTIAL EQUATIONS

The canonical momentum p of an electron moving at
a relativistic velocity u may be written as

p=mu-teA, (1)

where m=mq/[1— (1/c)*]"* and m, and ¢ are, re-
spectively, the rest mass and charge (negative quantity)
of an electron, ¢ denotes the speed of light in vacuum,
A is the magnetic vector potential, and 2 denotes the
magnitude of the velocity vector u.

The principle of least action is conveniently written
as

o [peai= [ nuter)-ai=o,  (2)
L ay Tay

where 1 is the position vector, x4, and x,, denote the
coordinates of the end points of the line integral, and é
is the usual variational operator. By taking one of the
three spatial coordinates, e.g., 3, as the independent
variable, and defining '=dr/dz and 0'=df/dz in a
cylindrical coordinate system, Eq. (2) can be written
as follows:

z2
0 / {mulr'2 (r9') 241712
z]

+e(Ad '+ A+ A;) }dz=0. (3)

The Eulerian equations for this system will yield the
differential equations for the electron orbit provided
that the magnitude of the velocity # is known as a
function of z. Since, according to the principle of least
action, the varied path satisfies the law of conservation
of energy, u# can be expressed in terms of the kinetic
energy 7T and the rest energy ¢ of the particle, i.e.,

(u/c) /[1— (u/c)*]"*= (I"+2Te) */er,  (4)

since mc*= e+ 7. Thus, after introducing Eqs. (1) and
(4), the variational equation, Eq. (3), can be written
as follows:

5 / Pdz=0, (5)

2 VW, Panofsky and M. Phillips, Classical Eleciricily and
Magnelism (Addison-Wesley Publishing Co., Inc., Cambridge,
Mass, 1955), Chap. 23.
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where  P= (724 27)Y2(72410"2+ 1) 12+ (ec/eo) (A"
Agrd'+-4,) with 7=(T/e) and e=moc®. Then the
Eulerian equations for 7(z) and 6(z) can be obtained

from
(6a)

(6b)

(d/dz) (P /or") — (9P/dr) =0
d
4 (d/dz) (9P/30') — (9.P/36) =0,

For an axially symmetric system, dF/d8=0 and
Egs. (5) and (6) are combined to give

[ (7220 12(0') [T+ (18') - 1172} o/ ) Aor =M
()

where M, is a constant of integration, independent of z.
It is observed that Eq. (7) expresses the conservation
of the 6 component of the canonical momentum since

(76') / (r* 120"+ 1) 2= (16) /u, )

where the dot denotes the time derivative. It is easily
shown that Eq. (7) is equivalent to the following
familiar relationship:

rpotedor= K, (9)

in which py=mo(r) /[1— (u/c)*]"* and Ke=mocM,.
A differential equation for r(z) can be obtained by
combining Egs. (5), (6a), and (7):

7' — (R/2w) [ (dw/dr) —7' (0w/dz) ]
= (= R¥2/w') (ec/eo) [(04,+/02) — (94./9r) ],
where R= (141"2), w=£(1—n2), &= (r*+27), and
n=E"2L(Mo/r) — (ecAo/e) 1. (11)

In view of the fact that w is a function of £ and 7, and
£ depends in turn on 7, which is the ratio of the particle
kinetic energy T' to the rest energy &, once T'(7, z)
and A(7, z) are known, then Eq. (10) can be solved
for 7(z) for a properly specified set of input conditions;
6(z) then can be determined directly from Eq. (7).

Tt should be noted that 5 can be written as =
(ug/u)=r6/u, and ' as r'=u,/u.=i/Z, where u’=
(u24ug+u2). If the radial velocity u, is much
smaller than the axial velocity ., i.e., #*&1, then
R~1.

(10)

III. PARAXIAL RAY EQUATIONS FOR AN AXIALLY
SYMMETRIC FLOW

Under the condition 721, Eq. (10) takes the follow-

ing form:
7" =w{ (r4+1)[(87/0r) — 1’ (97/02) THn(8)"*(Mo/7*)
4 (8) 12 (ec/e0) - [(940/0r) —1'(940/02) 1}
—w 2 (ec/e0) [(9A4,/02) — (9A./r) ].

The law of conservation of the particle energy can be
expressed as

(12)

T+ eV = constant, (13a)
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so that
dr/dr= (—e/e) (0% /0r)
and
dr/dz= (—e/ey) (0¥ /9z). (13b)
In addition, if v and B are defined as
y=(1-p)7" and B=(u/c), (14a)

then from Eq. (4), &=(y?6?) so that (r+1)=
(14-£)2=+ and from Eqgs. (9) and (11)

1(§)"2=[(Mo/r) — (ecAo/er) 1=y (uts/)

w=§(u/u)?
As a result Eq. (12) can be written as
v = (1/yu?) { (—e/mo) [ (0% /dr) —7' (0¥ /d3) ]
—u9(0/0r) [ (Myc/r) — (e/mq) Ao ]— (e/mo) 1tgr’

X (044/02) } — (yu.) "2 (e/mo) [ (04,/dz) — (0A4./dr) ],
(15)
where ¥ (7, z) and A(r, 3) are, respectively, the scalar
and vector potentials of the system under consider-
ation. The potentials, in general, consist of two parts
(one part due to an external source and the other due
to the electron stream space charge and current). Fur-

thermore, these potentials must satisfy the following
partial differential equations:

VA =—p/e

(14b)
and

and V x(V xA)=pupu, (16)

where p is the space-charge density and u, and e denote
the permeability and permittivity of vacuum, re-
spectively.

For an axially symmetric system Poisson’s equation
becomes

r=1(9/ar) [r (8% /9r) 14 (9°¥/02*) = —pyy/e  (17a)

and for a steady-state static condition V-A can be
taken as zero so that Egs. (16) give, in component
form,

(9/0r)[r(8/0r) (rA;) 1+ (6°A,/02*) = — popoyatr, (17b)

(8/ar)[r2(8/0r) (rAq) T+ (8%A4/02%) = — popoyts  (17¢)
and
r1(0/0r) [r(0A4./9z) |+ (324 ,/02%) = — mopoytts,  (17d)

where po is the rest charge density which is a negative
quantity for electrons and is assumed to be constant in
the present investigation. It should be noted that,
relativistically, charge density and current density are
simply different aspects of the same thing. If p is a
“proper” charge density in a frame where charges are
at rest, then p=vyp, gives the transformation from a
charge density at rest to a charge density in a non-
proper frame, ensuring the invariance of the total
charge. This can be seen as follows: A spatial volume
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element dv is related to a proper spatial volume du
by dv=dw,/y, since only one dimension (e.g., the
z direction if %, is comparable to ¢) suffers a Lorentz
contraction and hence pdv= pydv, and the charge within
a given boundary remains invariant. The law of con-

servation of energy [Eq. (13)7] can be written as
Moyt eV = myc* (18a)

and the concept of the conservation of canonical
momentum is expressed as

moyit,+eAd, =0, (18b)
myyugteAdo= Ko/r (18¢)
and
moyu,+eAd,=0. (18d)
Combining Egs. (17) and (18) yields
r~1(9/ar) [r(9v/3r) 14 (8%y/02*) =By, (19a)
(8/ar)[r1(8/0r) (rU) ]+ (8*U/92*) =ps?U, (19b)

(8/0r)[r1(a/0r) (rV) 14 (82V /02%) =Bs*V  (19c¢)
and
r=1(8/3r) [r(0W /r) 1+ (9*WV /922) = B> WV,

where

(19d)

V= (77‘0) ’ W= ('Y“z),

and  w,2= (epy/moe) -

U= (yu,),
B’= (‘-’-’p2/52)

Equations (19) are linear partial differential equa-
tions and can be solved by the standard technique of
separation of variables. For example, it is easily ob-
served that the general solution of Eqgs. (19) can be
written in product form [R(r)Z(z)], where R(r)
denotes a linear combination of the nth-order modified
Bessel functions of the first kind, 7,(ar), the second
kind, K,(ar), where a=(k*4p)"2 with % being
the separation constant. For k70, Z(z) is a periodic
sinusoidal function of z, whereas for k=0 it is a linear
function of z. The solutions of Egs. (19a) and (19d)
involve the zero-order modified Bessel function, while
that of Egs. (19b) and (19c) involve the first-order
modified Bessel function.

When a solid electron beam is considered, the quan-
tities v, U, V, and T all must remain finite along the
axis =0, and consequently the modified Bessel func-
tion of the second kind is not permissible in the solution
of Egs. (19). Thus,

vy(r, ¢) = Mily(ar) coskg, (20a)
Ul(r, ¢)=M;(k/e) I (ar) sinkg, (20b)
V(r, §) = MsIl(ar) cosks (20c)
and
W (r, §) = Mslo(ar) cosks, (20d)

in which V-A=0 has been used, and (= (z—2%). M,
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M,, M;, and z, are the constants of integration which
are yet to be determined.

From Egs. (18) and (20), the potential in the beam
region, allowing for the presence of applied static
fields, can be expressed as follows:

(7, ) =— Eit+ (moc®/— ) Milo(ar) coski—+ (moc?/e),
A (1, §) = (mo/ —e) (k/a) M1 (ar) sinkg,

Ao(r, §) = (mo/ — e) M1 (ar) coski—+ (Kofer)
and

A.(r, §) = (mo/— e) Mslo(ar) cosky,

in which =0, ie.,, =3z denotes the entry into the
interaction region under consideration.

It should be noted that any longitudinal inhomo-
geneity, which may exist in the system, is represented
by the constant k. For example, in an infinitely long
homogeneous beam k& can be taken as zero. For a
constant velocity drifting beam, £, vanishes. In this
case, u,= (Ms/M;), which is independent of z. For an
accelerating beam, FEy##0 and it can easily be ob-
served from Egs. (18), (20), and (21) that #, does
depend upon z. For a laminar flow, i.e., nonintersecting
electron trajectories that are sufficiently well confined
in the transverse direction, only the motion of the
boundary electron need be considered. Thus, Eq. (15)
can be used for the investigation of the variation of the
radius of the beam boundary as a function of axial
distance.

Let y be the beam radius under consideration, and
suppose that the quantity (ay) satisfies the following
inequality:

(ay) 1.
Then the Bessel functions may be expanded as follows:

To(ay) =1+ (ay)?

I (ay) 2% (ay) +1'6(ay)® (22)

Thus upon substituting Eqs. (20) and (21) into Eq.
(15), with the approximation (22), the following
differential equation is obtained:

¥+ ((Go/cosks) [1— 1 (e®y?) TH{ G2y [1— 1 (a??) ]
— 802} k tank{)+y[ G2+ 5 (B —a6e?) ]
+16 (a?y®) (a0’ B?) =0,

(21)

and

(23)
where

Go=[(eEo/mo) (M/M)],  Gi=(aM;/2M3),

505 (CA[],/M;;) .

w, is the electron-beam plasma angular frequency for a
beam with infinite lateral extent. When the beam cross
section is finite, such as is frequently the case, the
plasma angular frequency is much smaller than that
for an infinite beam due to the effect of the conducting
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boundary surrounding the beam. The effect of the
finiteness of the beam size on the plasma frequency
can be taken into account by replacing w, by w,=
Ryw,, with R, denoting the plasma reduction factor.
Formulas are available for the determination of R,
in the case of a solid cylindrical beam passing through
a metal tube.”® The constants #;, M, and M3 can be
determined in terms of the physical and geometrical
parameters specified at the input plane {=0. It is
obvious from Egs. (20) and (21) that Mi=+vp,0=
[14 (—eWy,0/moc?) ], where Wy denotes the axial beam
voltage at the input plane {=0. From Eq. (20d),
Mz=g,0,(0, 0) = Myu,,. If the axial beam current at
the entrance plane is denoted by 7, then

n ve
Tis / W 2nrdr
0

= (7ry02) poM 3[21 1 (01}’0) / ayo], (24)

where y, denotes the injection beam radius. In view of
the fact that vypo=1/[1— (2.0/¢c)%]"? specification of
Yo,0 determines #,, and vy, as well as M; and Ms.
Iy and y, must also be specified in order to determine
wp. On the other hand, M, can be expressed in terms of
the input @-component velocity, from Eq. (20c) as
follows:

MI1(acyo) =y (0, 0) 1t (0, 0) = M1Lo(ayo) 110 (v, 0) -

It is convenient to introduce a pitch angle parameter
for the boundary electron at the input plane which is
defined as

tanyo= 144 (o, 0) /2¢: (o, 0) (25)
so that G; can be expressed as
Gi= 1y, ! tanyy. (26)

Thus specification of the velocity ratio (ue/u,) at
r=1, and { =0 determines the parameter Gy;  is small
since #y is assumed to be much smaller than ..

It should be noted that the solution of Eq. (23)
provides information on the profile of the electron beam
in the accelerating region. Suppose that the normalized
perturbation in beam radius, ¥, and the normalized
axial distance x are respectively defined as

V=(y=3)/y and x=(Bf), (27)

where y, denotes the injection beam radius. Then Eq.
(23) becomes

(@2Y /da?)+ (dY /dx) { (go/ cosva) [1—30*(1+¥)?]
+» tanwa p(1+7)2—10*pe? (14 ¥) *— 8> ]}
+(14+7) [(pe*/u?) +gs]— (1+7)? 50%g:=0,
where
g2=ao(/u) (62—1)'2,

(28)

o?=w(1+7),
gs=3[1— (1+1*)2]

13 G, M. Branch and T. G. Mihran, IRE Trans. Electron Devices
ED-2, 3 (1955).



FOCUSING OF

08 \ \ 1 ‘ ok I 1 \ |ty
0 10 20 30 40 50 60 70 80 20 100 o 120

(a)

A RELATIVISTIC ELECTRON FELOW

4203

A N
AN i
[ AN =01l 2
\ ~ - =~
)2 \ \\ = e //’
[ N g Sy
& | N N\ /Po=0li8 ///
03— N ~ o 7

N po=0Me 7
N 25

5 ~
04— s

ok I
o}

(b)

TFic. 1.(a) Velocity dependence of electron-beam profile when ¥Y?<«<1. (u=1.0, pp=0.1, »=a,=0). (b) Effect of transverse velocities
on electron-beam profile when 12<1. (60=1.015, p=1.0, v=0a,=0).

and
v=(k/Bo), o= tanyy,

ay= (eEqyo/mc?).

M= (»30}’0);

Before discussing the numerical solution of Eq. (28),
it is instructive to consider an interesting special case
in which the electron beam is longitudinally uniform,
so that »=0, and the perturbation in the beam radius is
small, i.e., V2K1.

Case I. Constant Velocity

In the drift region, where there is no longitudinal
electrostatic field g,=0, under the conditions »=0
and V%<1, Eq. (28) reduces to

(&Y /do?) + 1 Y+ Ty=0, (29)

where
= (po*/u?) — 3 (8°—1) (1—5u?)

o= (]702/[1. —%(502— 1) (1—%;.12).

The complete solution of Eq. (29) consists of two
parts—a complementary solution and a constant term
representing the particular integral. The form of the
complementary solution depends upon the algebraic
sign of /. When /<0, the complementary solution of
Eq. (29) takes the form of a nonperiodic exponential
function of x, which implies that the beam radius y
grows exponentially with the axial distance {, so that
the beam is continually spreading. However, when
>0, the complementary solution of Eq. (29) takes
the form of a periodic (sinusoidal) function of wx, so
that the beam is rippling. For /;=0, the solution of
Eq. (29) has a quadratic dependence on x. Conse-
quently the condition />0 can be regarded as the
condition for nonspreading of the drifting beam. The
general solution of Eq. (29) for the case #;>0 is given
by

V(x) =[Y4'/ () *] sin (/)" /2x
+ [ Vot (ho/h) ] cos () 2x— (ho/ ),

and

(30)

where ¥, and V' are, respectively, the normalized
deviation in beam radius and the slope of the beam
boundary at the entry to the drift region. When a
parallel-flow beam is launched into the drift region,
ie, V=0 and V=0, Eq. (30) yields

Y (x) = (ho/Iy) [cos (Jn) Px—17]. (31)

In this case, the beam profile is characterized by two
factors: (1) the amplitude of the beam ripple, and
(2) the ripple wavelength (scalloping wavelength).
Equation (31) indicates that ¥ (x) varies between 0
and —2(/y/lh). Since a laminar flow is being con-
sidered and y=0, (2/4/h) must be less than unity.
The conditions /7;>0 and 2/,</; can be combined to
give

35— 1) (1= 38) < po< Bt (02— 1) (144 (32)

Thus, when the beam parameters p, 6, and p, are so
chosen that condition (32) is satisfied, a rippling beam
results. The profile given by Eq. (31) is illustrated in
Figs. 1 for a conveniently chosen set of parameters.
The normalized amplitude of the beam ripple denoted
by ¥, and the characteristic wavelength \ are re-
spectively given by

Vo= (ho/M)
=[2p—p2 (0’ —1) (1—5u2) J/[2ps*

—w(0—1) (1—§u2) ]
and

A= 2/60(111) 1/2
=2myo/[p’—3p2(8?—1) (1=3®) ]2 (33)

It should be observed that when /=0, ¥ (x)=0, so
that the beam radius remains constant in the drift
region (balanced flow). The condition for balanced
flow, therefore, is written as

pi= (o= 1) (1~ ). (59

Note that 6= (¢/#.,) and p= (Byys) can be expressed
in terms of the input axial beam voltage ¥, and the
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Fic. 2. General dependence of beam profiie
on velocity. (u=1.0, po=0.1, r=ao=0).

axial beam current /; as

d={1-[1/(1+Q)*]}7*

and _
p2=4({14 (Lo/2D)[(82—1) J2}12—1),  (35)
where
Q= (—eWy,0/myc?)
and

D= (wc*mpe/e) = —4.26X 10% A.

When I, and 8§, are given in such a way that u><1,
then Eqgs. (34) and (35) become, respectively,

po*=gp2(8*—1)

w=(Io/D) (8~ 1), (36b)

It is of interest to note that for most electron-beam
devices the condition p*X1 is satisfied so that Eq.
(36a) is applicable. In the case of Brillouin flow,
Busch’s theorem gives the angular velocity 6 at the
entry to the drift region as the Larmor precession fre-
quency, or=/(|e| By/2mp), with B, denoting the
uniform applied static axial magnetic flux density
in the region under consideration. Consequently
(Y0, 0)=yowr and (po/y0) =Gi=wr/1u. 9. Since &=
(¢/120) and p= (Boyo), Eq. (36a) can be written as

wrt— 3w [ 1— (#:,0/c) ¥]=0. (37)
It is observed that the last term of the left-hand side
of Eq. (37) represents the relativistic focusing effect
due to the 6 component of magnetic field. When
(#2,0/¢)2<1, Eq. (37) reduces to 2w;*=w,?, which is
the familiar equilibrium expression for nonrelativistic
Brillouin flow.

(36a)
and

Case II. Accelerating Beam

For the case in which a longitudinally uniform beam
is accelerated by a uniform longitudinal static field,
(Ey#0 and »=0), Eq. (28) reduces under the con-
dition ¥*<1 to

(Y [da?) +go(AY Jdx) +hoV+1p=0,  (38a)

= (po*/w?) =5 (87— 1).

The complementary solution of Eq. (38a) has the
form e, where s satisfies the following algebraic
equation:

S2+gzs+]lz= 0. (38b)

In the accelerating region, £, must be negative and
since e is negative, g>0. Thus, Eq. (38b) has a pair of
complex conjugate roots with a negative real part
when 4/,> g,?. In this case, the complementary solu-
tion of Eq. (38a) is in the form of a damped oscillation
such that the fluctuation in the beam radius is stable.
On the other hand, when a longitudinal nonuniformity
is permitted, » must be different from zero. As an
illustration, Eq. (28) is solved numerically for the
input conditions ¥y=¥y=0 and the results are shown
in Figs. 2-4.

IV. DISCUSSION OF RESULTS

The profiles of a uniform drifting electron beam,
under the restriction Y21, are illustrated in Fig. 1(a)
for different values of axial beam velocity, &= (c/u.),
and-in Fig. 1(b) for various values of the input azi-
muthal to axial velocity ratio po= (#o/2.). It is ob-
served in Fig. 1(a) that if Wy and I, are adjusted so
that u is kept constant then the characteristic wave-
length of the beam A increases as &, increases. This
fact is also evident from Eq. (33). The normalized
amplitude of the beam ripple | ¥,, | has its minimum
value of zero when /ip=0, and for /<0, | ¥, | increases
as & increases. The plots of Fig. 1(b) indicate that for
given values of W, and Iy, A decreases as p, increases,
and thus the pinch effect increases as p, increases. The
variation of ¥, and X\ with the system parameters for
a drifting beam can be easily studied by inspecting
Eqgs. (33).

The profile of a uniform beam in a drift region
without the restriction of V2«1 is shown for various

Fic. 3. Effect of a longitudinal accelerat-
ing static electric field. (6,=1.013, p=1.0,
£0=0.1, »=0).
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Fic. 4. Effect of a longitudinal inhomo- k

geneity. (8,=1.013, p=1.0, p=0.1, a=
0.1).

values of velocity 8, in Fig. 2. It is observed that the
maximum beam radius is an almost periodic function
of the axial distance and the amplitude of oscillation
in the beam boundary decreases as &, decreases, i.e.,
as the axial beam velocity approaches the velocity of
light. The remarks made above in regard to Fig. 1(a)
are also applicable to Fig. 2. The effect of a longi-
tudinally uniform static accelerating electric field £
on the profile of a uniform beam is shown in Fig. 3.
It is noteworthy that the fluctuation in beam radius is
damped as F, is introduced since ao= (eEgyo/mc?*) #0.
The maximum normalized deviation in beam radius
decreases as E, increases and the amplitude of oscil-
lation in beam radius decreases as « increases. This is
consistent with the observation made in Fig. 2 since,
as the beam is accelerated and at large value of x, the
axial beam velocity is increased so that §; is decreased,
thus reducing the amplitude of oscillation of the beam
boundary. Finally, the profile of a beam with a small
nonuniformity in the accelerating region is illustrated
in Fig. 4. The nonuniformity has the effect of increasing
the amplitude of oscillation of the beam boundary.

V. CONCLUSIONS

In the present paper the analysis of relativistic
electron flows has been generalized to account for
radial variations in the electron velocity. The condition
for nonspreading of a laminar-flow drifting electron
beam is given by inequality (32), which is expressed in
terms of the beam parameters py, p, and 8y, which are
related to the ratio of transverse to longitudinal velocity
at the input, the beam current, and the axial beam
voltage. Tt is shown that for the case p?1, which is
rather common in many experimental systems, the
equilibrium condition for Brillouin flow with the
relativistic correction is given by Eq. (37). The
derived condition (37) implies that for a fixed w, the
higher the axial velocity of the beam the less applied
axial magnetic field that is needed to obtain a per-
fectly balanced flow. In the present investigation, since
it is assumed that the transverse velocity is much
smaller than the axial velocity, the axial component of
self-induced magnetic field would be much smaller
than the § component of self-induced magnetic field
and consequently the dominant self-focusing effect is
due to the Lorentz force from the § component of self-
magnetic field and the axial beam velocity.

If a linear beam is Jaunched at the entry of the drift
region, in which case py is zero, then from Eq. (34) it is
necessary that either §o=1 or u>=8 for the beam to be
perfectly balanced. However, for normal laboratory
operating conditions, the latter condition, i.e., u>=3§,
is rarely satisfied. Consequently, a perfectly balanced
flow would not likely be obtained unless the axial beam
velocity is nearly equal to the speed of light in vacuum.

Nonzero values of »= (k/f,) indicate the existence of
a nonuniformity along the beam. The cause of the
nonuniformity may be due to various factors, e.g., for
short beams the beam termination will effect the over-
all beam configuration due to reflections. Also when a
static spatially periodic electric field is used in the
focusing of the beam, % can be determined from the
spatial periodicity of the applied static electric field.

The system parameters used for Figs. 1-4 are con-
veniently chosen to illustrate the method of analysis
and generally correspond to the physical conditions
existing in accelerator devices rather than those of
microwave beam devices. However, it is not difficult to
make similar calculations for the parameters which
represent closely the physical condition encountered
in any experimental system.

The method of analysis developed here can be ex-
tended to include the effects of positive ions which may
be present when a partially neutralized beam is con-
sidered, provided that the potentials ¥ and A in the
system are properly modified.

LIST OF SYMBOLS

T =the particle kinetic energy,
€= the particle rest energy,
My=the integration constant [see text following Eq.
91
M,=the integration constant [see text following Eq.
(23)],
M,=the integration constant [see text following Eq.
(24) ],
M;=the integration constant [see text following Eq.
(23)],
Ky=the equivalent angular momentum of a particle,
A= the vector potential,
wr= the Larmor angular precession frequency,
w,= the electron radian plasma frequency,
p= the particle linear momentum,
Y= the scalar potential.





